JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Plant Growth Promotion and Gibberellin A3 Production by Aspergillus flavus Y2H001
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : The Korean Journal of Mycology
  • Volume 43, Issue 3,  2015, pp.200-205
  • Publisher : The Korean Society of Mycology
  • DOI : 10.4489/KJM.2015.43.3.200
 Title & Authors
Plant Growth Promotion and Gibberellin A3 Production by Aspergillus flavus Y2H001
You, Young-Hyun; Park, Jong Myong; Kang, Sang-Mo; Park, Jong-Han; Lee, In-Jung; Kim, Jong-Guk;
  PDF(new window)
 Abstract
Perilla frutescens var. japonica Hara was collected from farmland in Seongju-gun. Fifteen endophytic fungal strains with different colony morphologies were isolated from roots of P. frutescens. Waito-c rice seedlings were treated with the concentrated culture filtrates (CF) of endophytic fungi for observation of their plant growth-promoting activities. In the results, the CF of Y2H001 fungal strain promoted the growth of the waito-c rice seedlings. The phylogenetic tree of Y2H001 strain was analyzed by the combined sequences of the partial internal transcribed spacer region (ITS) and partial betatubulin gene. Molecular and morphological studies identified the Y2H001 strain as belonging to Aspergillus flavus. In gas chromatography mass spectrometry (GC/MS) analysis of the CF of Y2H001 strain, gibberellic acid (GA) was detected and quantified. Therefore, we describe Y2H001 strain as a new -producing A. flavus based on morphological, molecular characteristics and analysis of secondary metabolite.
 Keywords
Aspergillus flavus;Endophytic fungi;Gibberellic acid;Plant growth promotion;
 Language
Korean
 Cited by
 References
1.
Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM. Thermotolerance generated by plant/fungal symbiosis. Science 2002;298:1581. crossref(new window)

2.
Rodriguez RJ, Redman RS, Henson JM. The role of fungal symbioses in the adaptation of plants to high stress environments. Mitigation Adapt Strateg Glob Chang 2004;9:261-72. crossref(new window)

3.
Rodriguez RJ, Henson J, Van Volkenburgh E, Hoy M, Wright L, Beckwith F, Kim YO, Redman RS. Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2008;2:404-16. crossref(new window)

4.
Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Huckelhoven R, Neumann C, von Wettstein D, et al. The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci USA 2005;102:13386-91. crossref(new window)

5.
You YH, Yoon H, Kang SM, Shin JH, Choo YS, Lee IJ, Lee JM, Kim JG. Fungal diversity and plant growth promotion of endophytic fungi from six halophytes in Suncheon Bay. J Microbiol Biotechnol 2012;22:1549-56. crossref(new window)

6.
Khan SA, Hamayun M, Yoon H, Kim HY, Suh SJ, Hwang SK, Kim JM, Lee IJ, Choo YS, Yoon UH, et al. Plant growth promotion and Penicillium citrinum. BMC Microbiol 2008;8:231. crossref(new window)

7.
Hamayun M, Khan SA, Ahmad N, Tang DS, Kang SM, Na CI, Sohn EY, Hwang YH, Shin DH, Lee BH, et al. Cladosporium sphaerospermum as a new plant growth-promoting endophyte from the roots of Glycine max (L.) Merr. World J Microbiol Biotechnol 2009;25:627-32. crossref(new window)

8.
Hedden P, Phillips AL. Gibberellin metabolism: new insights revealed by the genes. Trends Plant Sci 2000;5:523-30. crossref(new window)

9.
Choi WY, Sin KS, Lee IJ, Rhee IK, Lee JH, Kim JG. Isolation of gibberellin-producing Penicillium spp. from the root of Lindera obtusiloba and Vaccinium koreanum. Kor J Mycol 2004; 32:16-22. crossref(new window)

10.
Rim SO, Lee JH, Choi WY, Hwang SK, Suh SJ, Lee IJ, Rhee IK, Kim JG. Fusarium proliferatum KGL0401 as a new gibberellin-producing fungus. J Microbiol Biotechnol 2005;15:809-14.

11.
Khan SA, Hamayun M, Kim HY, Yoon HJ, Seo JC, Choo YS, Lee IJ, Kim SD, Rhee IK, Kim JG. A new strain of Arthrinium phaeospermum isolated from Carex kobomugi Ohwi is capable of gibberellin production. Biotechnol Lett 2009;31:283-7. crossref(new window)

12.
You YH, Kwak TW, Kang SM, Lee MC, Kim JG. Aspergillus clavatus Y2H0002 as a new endophytic fungal strain producing gibberellins isolated from Nymphoides peltata in fresh water. Mycobiology 2015;43:87-91. crossref(new window)

13.
You YH, Yoon H, Kang SM, Woo JR, Choo YS, Lee IJ, Shin JH, Kim JG. Cadophora malorum Cs-8-1 as a new fungal strain producing gibberellins isolated from Calystegia soldanella. J Basic Microbiol 2013;53:630-4. crossref(new window)

14.
Khan AL, Hamayun M, Kang SM, Kim YH, Jung HY, Lee JH, Lee IJ. Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of Paecilomyces formosus LHL10. BMC Microbiol 2012;12:3. crossref(new window)

15.
Hamayun M, Khan SA, Khan AL, Rehman G, Sohn EY, Shah AA, Kim SK, Joo GJ, Lee IJ. Phoma herbarum as a new gibberellin-producing and plant growth-promoting fungus. J Microbiol Biotechnol 2009;19:1244-9.

16.
Hasan HA. Gibberellin and auxin production plant root fungi and their biosynthesis under salinity-calcium interaction. Rostl Vyroba 2002;48:101-6.

17.
Yamada A, Ogura T, Degawa Y, Ohmasa M. Isolation of Tricholoma matsutake and T. bakamatsutake cultures from fieldcollected ectomycorrhizas. Mycoscience 2001;42:43-50. crossref(new window)

18.
You YH, Park JM, Han KS, Park JH, Kim JG. Comparative analysis of endophytic fungi isolated from dominant hydrophytes in Junam and Dongpan wetland. Kor J Mycol 2015;43: 92-8.

19.
White TJ, Bruns TD, Lee SB, Taylor JW. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, editors. PCR protocols: a guide to methods and applications. San Diego: Academic Press; 1990. p. 315-22.

20.
Glass NL, Donaldson GC. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 1995;61: 1323-30.

21.
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 2013;30:2725-9. crossref(new window)

22.
Visagie CM, Hirooka Y, Tanney JB, Whitfield E, Mwange K, Meijer M, Amend AS, Seifert KA, Samson RA. Aspergillus, Penicillium and Talaromyces isolated from house dust samples collected around the world. Stud Mycol 2014;78:63-139. crossref(new window)

23.
Rim SO, You YH, Yoon H, Kim YE, Lee JH, Kang MS, Kim C, Seu YB, Kim JG. Characterization of gibberellin biosynthetic gene cluster from Fusarium proliferatum. J Microbiol Biotechnol 2013;23:623-9. crossref(new window)

24.
Kang SJ, Kang JS, Chung DH. The effects of mixed culture with Aspergillus flavus, Aspergillus niger and Penicillium griseofulvum on aflatoxin and patulin production. J Food Hyg Saf 2001;16:206-11.

25.
Park ES, Bae IK, Kim HJ, Lee SE. Novel regulation of aflatoxin B1 biosynthesis in Aspergillus flavus by piperonal. Nat Prod Res 2015;14:1-4.

26.
Yin HB, Chen CH, Kollanoor-Johny A, Darre MJ, Venkitanarayanan K. Controlling Aspergillus flavus and Aspergillus parasiticus growth and aflatoxin production in poultry feed using carvacrol and trans-cinnamaldehyde. Poult Sci 2015;94:2183-90. crossref(new window)