JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Nanoparticles as Alternative Pesticides: Concept, Manufacturing and Activities
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : The Korean Journal of Mycology
  • Volume 43, Issue 4,  2015, pp.207-215
  • Publisher : The Korean Society of Mycology
  • DOI : 10.4489/KJM.2015.43.4.207
 Title & Authors
Nanoparticles as Alternative Pesticides: Concept, Manufacturing and Activities
Ahmed, Ahmed I.S.; Lee, Youn Su;
  PDF(new window)
 Abstract
Nanotechnology, which has become an important area of science, has caused an enormous developmental revolution in many fields. In the last two decades researchers have focused on overcoming the obstacles encountered during the preparation of nanoparticles. This article highlights the nanotechnology, along with a brief description of the manufacturing, concepts and activities of nanoparticles as alternative pesticides against plant pathogens, some methods for evaluation of nanoparticles against phytopathogens in vitro and in vivo, and explains the importance of some common nanoparticle types used in agricultural applications and plant pathology.
 Keywords
Nanoparticles;Pesticides;Plant pathogens;
 Language
English
 Cited by
 References
1.
Drexler KE. Engines of creation: the coming era of nanotechnology. London: Fourth Estate; 1988.

2.
Drexler KE. Nanosystems: molecular machinery, manufacturing, and computation. New York: John Wiley & sons; 1992.

3.
Pattanayak M, Muralikrishnan T, Nayak PL. Green Synthesis of gold nanoparticles using Daucus carota (carrot) aqueous extract. World J Nano Sci Technol 2014;3:52-8.

4.
Biswas P, Wu CY. Nanoparticles and the environment. J Air Waste Manag Assoc 2005;55:708-46. crossref(new window)

5.
Christof MN. Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem Int Ed Engl 2001;40:4128-58. crossref(new window)

6.
Buzea C, Pacheco II, Kevin R. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2007;2:MR17.

7.
Gao S, Zhao Y, Gou P, Chen N, Xie Y. Preparation of CuAlO2 nanocrystalline transparent thin films with high conductivity. Nanotechnolgy 2003;14:538-41. crossref(new window)

8.
Zong RL, Zhou J, Li B, Fu M, Shi SK, Li LT. Optical properties of transparent copper nanorod and nanowire arrays embedded in anodic alumina oxide. J Chem Phys 2005;123:094710. crossref(new window)

9.
Choi WS, Yadav DR, Kim SW, Lee YS, Park MR. Antibacterial effect of nickel nanoparticles on Acidovorax citrulli, the causal agent of bacterial fruit blotch of cucurbits. J Agric Life Environ Sci 2015;27:in press.

10.
Ray PC, YU H, FU PP. Toxicity and environmental risks of nanomaterials: challenges and future needs. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 2009;27:1-35. crossref(new window)

11.
Flahaut E. Introduction to the special focus issue: environmental toxicity of nanoparticles. Foreword. Nanomedicine (Lond) 2010;5:949-50. crossref(new window)

12.
Bonnemann H, Richards RM. Nanoscopic metal particles: synthetic methods and potential applications. Eur J Inorg Chem 2001;2455-80.

13.
Ju-Nam Y, Lead JR. Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Sci Total Environ 2008;400:396-414. crossref(new window)

14.
Xu C, van Zalinge H, Pearson JL, Glidle A, Cooper JM, Cumming DR, Haiss W, Yao J, Schiffrin DJ, Proupin-Perez M, et al. A combined top-down bottom-up approach for introducing nanoparticle networks into nanoelectrode gaps. Nanotechnology 2006;17:3333-9. crossref(new window)

15.
Yin M, Willis A, Redl F, Turro NJ, O'Brien SP. Influence of capping groups on the synthesis of $Fe_2O_3$ nanocrystals. J Mater Res 2004;19:1208-15. crossref(new window)

16.
Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B. Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 2014;9:385-406.

17.
Shenhar R, Rotello VM. Nanoparticles: scaffolds and building blocks. Acc Chem Res 2003;36:549-61. crossref(new window)

18.
Warren D. Green chemistry: a teaching resource. London: Royal Society of Chemistry; 2002.

19.
Clark JH, Macquarrie D. Handbook of green chemistry and technology. Oxford: Blackwell Science; 2002.

20.
Romeilah RM, Fayed SA, Mahmoud GI. Chemical compositions, antiviral and antioxidant activities of seven essential oils. J Appl Sci Res 2010;6:50-62.

21.
Li Y, Liu J, Wang Y, Wang ZL. Preparation of monodispersed Fe-Mo nanoparticles as the catalyst for CVD synthesis of carbon nanotubes. Chem Mater 2001;13:1008-14. crossref(new window)

22.
Roduner E. Size matters: why nanomaterials are different. Chem Soc Rev 2006;35:583-92. crossref(new window)

23.
Nowack B, Bucheli TD. Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 2007;150:5-22. crossref(new window)

24.
Schuler D, Frankel RB. Bacterial magnetosomes: microbiology, biomineralization and biotechnological applications. Appl Microbiol Biotechnol 1999;52:464-73. crossref(new window)

25.
Suzuki Y, Kelly SD, Kemner KM, Banfield JF. Nanometre-size products of uranium bioreduction. Nature 2002;419:134. crossref(new window)

26.
Banfield JF, Welch SA, Zhang H, Ebert TT, Penn RL. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science 2000;289:751-4. crossref(new window)

27.
Hansel CM, Benner SG, Nico P, Fendorf S. Structural constraints of ferric (hydr) oxides on dissimilatory iron reduction and the fate of Fe (II). Geochim Cosmochim Acta 2004;68:3217-29. crossref(new window)

28.
Wiesner MR, Lowry GV, Jones KL, Hochella MF Jr, Di Giulio RT, Casman E, Bernhardt ES. Decreasing uncertainties in assessing environmental exposure, risk, and ecological implications of nanomaterial. Environ Sci Technol 2009;43:6458-62. crossref(new window)

29.
Sioutas C, Delfino RJ, Singh M. Exposure assessment for atmospheric ultrafine particles (UFPs) and implications in epidemiologic research. Environ Health Perspect 2005;113:947-55. crossref(new window)

30.
Daniel MC, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 2004;104:293-346. crossref(new window)

31.
Shtykova EV, Huang X, Remmes N, Baxter D, Stein B, Dragnea B, Svergun DI, Bronstein LM. Structure and properties of iron oxide nanoparticles encapsulated by phospholipids with poly (ethylene glycol) tails. J Phys Chem C 2007;111:18078-86. crossref(new window)

32.
Baldassari S, Komarneni S, Mariani E, Villa C. Microwavehydrothermal process for the synthesis of rutile. Mater Res Bull 2005;40:2014-20. crossref(new window)

33.
Oskam G. Metal oxide nanoparticles: synthesis, characterization and application. J Solgel Sci Technol 2006;37:161-4. crossref(new window)

34.
Hoffmann MR, Martin ST, Choi W, Bahnemann DW. Environmental applications of semiconductor photocatalysis. Chem Rev 1995;95:69-96. crossref(new window)

35.
Kamat PV. Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chem Rev 1993;93:267-300. crossref(new window)

36.
Krishnaraj C, Ramachandran R, Mohan K, Kalaichelvan PT. Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochim Acta A Mol Biomol Spectrosc 2012;93:95-9. crossref(new window)

37.
Kim SW, Jung JH, Lamsal K, Kim YS, Min JS, Lee YS. Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology 2012;40:53-8. crossref(new window)

38.
Lamsal K, Kim SW, Jung JH, Kim YS, Kim KS, Lee YS. Inhibition effects of silver nanoparticles against powdery mildews on cucumber and pumpkin. Mycobiology 2011;39:26-32. crossref(new window)

39.
Grancharov SG, Zeng H, Sun S, Wang SX, O'Brien S, Murray CB, Kirtley JR, Held GA. Bio-functionalization of monodisperse magnetic nanoparticles and their use as biomolecular labels in a magnetic tunnel junction based sensor. J Phys Chem B 2005;109:13030-5. crossref(new window)

40.
Belloni J, Mostafavi M, Remita H, Marignier JL, Delcourt MO. Radiation-induced synthesis of mono- and multi-metallic clusters and nanocolloids. New J Chem 1998;22:1239-55. crossref(new window)

41.
Ding Y, Zhang G, Wu H, Hai B, Wang L, Qian Y. Nanoscale magnesium hydroxide and magnesium oxide powders: control over size, shape and structure via hydrothermal synthesis. Chem Mater 2001;3:435-40.

42.
Silva LG, Solis-Pomar F, Gutierrez-Lazos CD, Melendrez MF, Martinez E, Fundora A, Perez-Tijerina E. Synthesis of Fe nanoparticles functionalized with oleic acid synthesized by inert gas. J Nanomater 2014. http://dx.doi.org/10.1155/2014/643967. crossref(new window)

43.
Arbab AS, Bashaw LA, Miller BR, Jordan EK, Lewis BK, Kalish H, Frank JA. Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and transfection agent for cellular MR imaging. Radiology 2003;229:838-46. crossref(new window)

44.
Widder KJ, Senyel AE, Scarpelli GD. Magnetic microspheres: A model system of site specific drug delivery in vivo. Proc Soc Exp Biol Med 1978;158:141-6. crossref(new window)

45.
Perez JM. Iron oxide nanoparticles: hidden talent. Nat Nanotechnol 2007;2:535-6. crossref(new window)

46.
Ramaswamy V, Jagtap NB, Vijayanand S, Bhange DS, Awati PS. Photocatalytic decomposition of methylene blue on nanocrystalline titania prepared by different methods. Mater Res Bull 2008;43:1145-52. crossref(new window)

47.
Kawai-Nakamura A, Sato T, Sue K, Tanaka S, Saitoh K, Aida K, Hiaki T. Rapid and continuous hydrothermal synthesis of metal and metal oxide nanoparticles with a microtube-reactor at 523 K and 30 MPa. Mater Lett 2008;62:3471-3. crossref(new window)

48.
Li H, Duan X, Liu G, Jia X, Liu X. Morphology controllable synthesis of $TiO_2$ by a facile hydrothermal process. Mater Lett 2008;62:4035-7. crossref(new window)

49.
Rashidzadeh M. Synthesis of high-thermal stable titanium dioxide nanoparticles. Int J Photoenergy 2008. http://dx.doi.org/10.1155/2008/245981. crossref(new window)

50.
Kim JH, Lee GD, Park SS, Hong SS. Hydrothermal synthesis of titanium dioxides using acidic and basic peptizing agents and their photocatalytic activity on the decomposition of orange II. Stud Surf Sci Catal 2006;159:237-40. crossref(new window)

51.
Wang WN, Lenggoro IW, Terashi Y, Kim TO, Okuyama K. One-step synthesis of titanium oxide nanoparticles by spray pyrolysis of organic precursors. Mater Sci Eng B Solid State Mater Adv Technol 2005;123:194-202. crossref(new window)

52.
Jones N, Ray B, Ranjit KT, Manna AC. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett 2008;279:71-6. crossref(new window)

53.
Aneesh PM, Vanaja KA, Jayaraj MK. Synthesis of ZnO nanoparticles by hydrothermal method. Proc SPIE Int Soc Opt Eng 2007;6639:66390J.

54.
Tarasenko N, Nevar A, Nedelko M. Properties of zinc-oxide nanoparticles synthesized by electrical-discharge technique in liquids. Physica Status Solidi A Appl Res 2010;207:2319-22. crossref(new window)

55.
Guo L, Yang S, Yang C, Yu P, Wang J, Ge W, Wong GK. Synthesis and characterization of poly (vinylpyrrolidone)-modified zinc oxide nanoparticles. Chem Mater 2000;12:2268-74. crossref(new window)

56.
He L, Liu Y, Mustapha A, Lin M. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 2010;166:207-15.

57.
Wani AH, Shah MA. A unique and profound effect of MgO and ZnO nanoparticles on some plant pathogenic fungi. J Appl Pharm Sci 2012;2:40-4.

58.
Yehia RS, Ahmed OF. In vitro study of the antifungal efficacy of zinc oxide nanoparticles against Fusarium oxysporum and Penicilium expansum. Afr J Microbiol Res 2013;7:1917-23.

59.
Allahverdiyev AM, Kon KV, Abamor ES, Bagirova M, Rafailovich M. Coping with antibiotic resistance: combining nanoparticles with antibiotics and other antimicrobial agents. Expert Rev Anti Infect Ther 2011;9:1035-52. crossref(new window)

60.
Navale GR, M T, Late DJ, Shinde SS. Antimicrobial activity of ZnO nanoparticles against pathogenic bacteria and fungi. JSM Nanotechnol Nanomed 2015;3:1033.

61.
Suleiman M, Al Ali A, Hussein A, Hammouti B, Hadda TB, Warad I. Sulfur nanoparticles: synthesis, characterizations and their applications. J Mater Environ Sci 2013;4:1029-33.

62.
Senel S, McClure SJ. Potential applications of chitosan in veterinary medicine. Adv Drug Deliv Rev 2004;56:1467-80. crossref(new window)

63.
Kim SK, Rajapakse N. Enzymatic production and biological activities of chitosan oligosaccharides (COS). Carbohydr Polym 2005;62:357-68. crossref(new window)

64.
Gates BC. Supported metal clusters: synthesis, structure, and catalysis. Chem Rev 1995;95:511-22. crossref(new window)

65.
Chandra S, Kumar A, Tomar PK. Synthesis and characterization of copper nanoparticles by reducing agent. J Saudi Chem Soc 2014;18:149-53. crossref(new window)

66.
Kanhed P, Birla S, Gaikwad S, Gade A, Seabra AB, Rubilar O, Duran N, Rai M. In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Mater Lett 2014;115:13-7. crossref(new window)

67.
Raliya R, Tarafdar JC. Biosynthesis and characterization of zinc, magnesium and titanium nanoparticles: an eco-friendly approach. Int Nano Lett 2014;4:93. crossref(new window)

68.
Camtakan Z, Erenturk S, Yusan S. Magnesium oxide nanoparticles: preparation, characterization, and uranium sorption properties. Environ Prog Sustain Energy 2011;31:536-43.

69.
Rodriguez JA, Garcia MF. Synthesis, properties, and applications of oxide nanomaterials. Hoboken: Wiley-Interscience; 2007.

70.
Klabunde KJ. Nanoscale materials in chemistry. New York: Wiley-Interscience; 2001.

71.
Imada K, Sakai S, Kajihara H, Tanaka S, Ito S. Magnesium oxide nanoparticles induce systemic resistance in tomato against bacterial wilt disease. Plant Pathol 2015. http://dx.doi.org/10.1111/ppa.12443. crossref(new window)

72.
Tolaymat TM, El badawy AM, Genaidy A, Scheckel KG, Luxton TP, Suidan M. An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer-reviewed scientific papers. Sci Total Environ 2010;408:999-1006. crossref(new window)

73.
Elzey S, Grassian VH. Agglomeration, isolation and dissolution of commercially manufactured silver nanoparticles in aqueous environments. J Nanopart Res 2010;12:1945-58. crossref(new window)

74.
Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 2008;17:372-86. crossref(new window)

75.
Pulit J, Banach M, Szczyg owska R, Bryk M. Nanosilver against fungi. Silver nanoparticles as an effective biocidal factor. Acta Biochim Pol 2013;60:795-8.

76.
Jung JH, Kim SW, Min JS, Kim YJ, Lamsal K, Kim KS, Lee YS. The effect of nano-silver liquid against the white rot of the green onion caused by Sclerotium cepivorum. Mycobiology 2010;38:39-45. crossref(new window)

77.
Min JS, Kim KS, Kim SW, Jung JH, Lamsal K, Kim SB, Jung M, Lee YS. Effect of colloidal silver nanoparticles on sclerotium forming phytopathogenic fungi. Plant Pathol J 2009;25:376-80. crossref(new window)

78.
Kasprowicz MJ, Gorczyca A, Frandsen RJ. The effect of nanosilver on pigments production by Fusarium culmorum (W. G. Sm.) Sacc. Pol J Microbiol 2013;62:365-72.

79.
Kasprowicz MJ, Kozio M, Gorczyca A. The effect of silver nanoparticles on phytopathogenic spores of Fusarium culmorum. Can J Microbiol 2010;56:247-53. crossref(new window)

80.
Aguilar-Mendez M, San Martin-Martinez E, Ortega-Arroyo L, Cobian-Portillo G, Sanchez-Espindola E. Synthesis and characterization of silver nanoparticles: effect on phytopathogen Colletotrichum gloesporioides. J Nanopart Res 2011;13:2525-32. crossref(new window)

81.
Kim SW, Adhikari M, Yadav DR, Lee HG, Um YH, Kim HS, Lee YS. Antimicrobial activity of nano materials against Acidovorax citrulli and other plant pathogens. Res Plant Dis 2015;21:12-9. crossref(new window)

82.
Paulkumar K, Gnanajobitha G, Vanaja M, Rajeshkumar S, Malarkodi C, Pandian K, Annadurai G. Piper nigrum leaf and stem assisted green synthesis of silver nanoparticles and evaluation of its antibacterial activity against agricultural plant pathogens. Sci World J 2014. http://dx.doi.org/10.1155/2014/829894. crossref(new window)