JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Derivation of Single Phase Material Properties Equivalent to 1-3 Piezoelectric Composites by the Resonant Method
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Derivation of Single Phase Material Properties Equivalent to 1-3 Piezoelectric Composites by the Resonant Method
Kim, Jin-Wook; Pyo, Sung-Hun; Roh, Yong-Rae;
  PDF(new window)
 Abstract
Piezoelectric composites have been widely used in broadband acoustic transducers because of their lower acoustic impedance and higher electro-mechanical coupling factor. However, their complex structure has placed many limitations on the design of various transducers. This paper suggests the methodology to substitute the 1-3 piezocomposites by a single-phased material that has properties equivalent to those of the piezocomposites. The resonant method and finite element analysis (FEA) are used to derive the equivalent properties that can accurately depict resonant properties at various vibration modes of the piezocomposites. Validity of the suggested method is confirmed by comparing frequency characteristics of fabricated 1-3 piezocomposite specimens and FEA models. Further, accuracy of the derived material constants is checked by applying the equivalent properties to FEA models of the single phase material for various resonant modes.
 Keywords
Piezocomposite;Resonant Method;Equivalent Properties;Homogenization;Finite Element Analysis;Resonator;
 Language
Korean
 Cited by
1.
중공형 전면추를 가진 Tonpilz 트랜스듀서 연구,김현기;임영섭;노용래;

한국음향학회지, 2014. vol.33. 2, pp.94-101 crossref(new window)
1.
Study on the Wideband Tonpilz Transducer with a Cavity-Type Head Mass, The Journal Of The Acoustical Society Of Korea, 2014, 33, 2, 94  crossref(new windwow)
 References
1.
한교훈, 노용래, "1-3형 압전복합체를 이용한 초음파 탐촉자 설계 및 시작품 제작," 한국음향학회지, 17권, 8호, 48-57쪽, 1998.

2.
C. H. Sherman and J. L. Butler, Transducers and Arrays for Underwater Sound, Springer, New york, Chap. 3 and 4, 2007.

3.
W. A. Smith and B. A. Auld, "Modeling 1-3 composite piezoelectrics: thickness-mode oscillations," IEEE Trans. U.F.F.C, vol. 38, no. 1, pp. 40-47, 1991.

4.
H. L. W. Chan and J. Unsworth, "Simple model for piezoelectric ceramic/polymer 1-3 composites used in ultrasonic transducer applications," IEEE Trans. U.F.F.C, vol. 36, no. 4, pp. 434-441, 1989.

5.
T. R. Gururaja, W. A. Schulze, L. E. Cross, R. E. Newnham, B. A. Auld, and Y. J. Wang, "Piezoelectric composite materials for ultrasonic transducer applications. part I: resonant modes of vibration of PZT rod-polymer composites," IEEE Trans. Sonics Ultrason., vol. SU-32, no. 4, pp. 481-498, 1985.

6.
E. Lenglet, "Numerical homogenization techniques applied to piezoelectric composites," J. Acoust. Soc. Am, vol. 113, no. 2, pp. 826-833, 2003. crossref(new window)

7.
H. Taunaumang, I. L. Guy, and H. L. W. Chan, "Electromechanical properties of 1-3 piezoelectric ceramic/piezoelectric polymer composites," J. Appl. Phys. vol. 76, no. 1, pp. 484-489. 1994. crossref(new window)

8.
G. M. Odegard, "Constitutive modeling of piezoelectric polymer composites," Acta Materialia, vol. 52, no. 18, pp. 5315-5330, 2004. crossref(new window)

9.
G. M. Odegard, T. C. Clancy and T. S. Gates, "Modeling of the mechanical properties of nanoparticle/polymer composites," Polymer, Vol. 46, no. 2, pp. 553-562, 2005. crossref(new window)

10.
S. Mercier and A. Molinari, "Homogenization of elastic-viscoplastic heterogeneous materials: self-consistent and Mori-Tanaka schemes," International Journal of Plasticity, vol. 25, no. 6, pp. 1024-1048, 2009. crossref(new window)

11.
L. Li, L. Wang, L. Qin and T. Lv, "The theoretical model of 1-3-2 piezocomposites," IEEE Trans. U.F.F.C, vol. 56, no. 7, pp. 1476-1482, 2009.

12.
R. E. Newnham, Properties of Materials: Anisotropy, Symmetry, Structure, Oxford, New york, 2005.

13.
O. B. Wilson, Introduction to Theory and Design of Sonar Transducers, Peninsulr Publishing, Los Altos, Chap. 2 and 6, 1988.

14.
IEEE Standard on Piezoelectricity, The Institute of Electrical and Electronics Engineers, New york, 1988.

15.
T. Ikeda, Fundamentals of Piezoelectricity, Oxford, New york, 1996.

16.
D. J. Powell, G. L. Wojcik, C. S. Desilets, T. R. Gururaja, K. Guggenberger, S. Sherrrit, and B. K. Mukherjee, "Incremental model-build-test validation exercise for a 1-D biomedical ultrasonic imaging array," IEEE Ultrason. Sym. pp. 1669-1674, 1997.

17.
T. Lahmer, M. Kaltenbacher, B. Kaltenbacher, R. Lerch and E. Leder, "FEM-based determination of real and complex elastic, dielectric, and peizoelectric modulli in piezoceramic materials," IEEE Trans. U.F.F.C., vol. 55, no. 2, pp. 465-475, 2008.

18.
이상한, 노용래, "고상단결정법으로 성장시킨 0.68Pb (Mg1/3Nb2/3) O3-0.32PbTiO3 압전단결정의 물성평가," 한국음향학회지, 23권, 2호, pp. 103-108, 2004.

19.
B. Jaffe, W. C. Cook and H. Jaffe, Piezoelectric Ceramics, Academic press, London, 1971.

20.
A. H. Meitzler, H. M. O'bryan, Jr., and H. F. Tiersten, "Definition and measurement of radial mode coupling factors in piezoelectric ceramic materials with large variations in Poisson's ratio," IEEE Trans. Sonics Ultrason., vol. SU-20, no. 3, pp. 233-239, 1973.