Advanced SearchSearch Tips
Soluble Polyimide Binder for Silicon Electrodes in Lithium Secondary Batteries
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Applied Chemistry for Engineering
  • Volume 26, Issue 6,  2015, pp.674-680
  • Publisher : The Korean Society of Industrial and Engineering Chemistry
  • DOI : 10.14478/ace.2015.1095
 Title & Authors
Soluble Polyimide Binder for Silicon Electrodes in Lithium Secondary Batteries
Song, Danoh; Lee, Seung Hyun; Kim, Kyuman; Ryou, Myung-Hyun; Park, Won Ho; Lee, Yong Min;
  PDF(new window)
A solvent-soluble polyimide (PI) polymeric binder was synthesized by a two-step reaction for silicon (Si) anodes for lithium-ion batteries. Polyamic acid was first prepared through ring opening between two monomers, bicyclo[2,2,2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride (BCDA) and 4,4-oxydianiline (ODA), followed by condensation reaction. Using the synthesized PI polymeric binder (molecular weight
polyimide synthesis;polymeric binder;adhesion strength;silicon electrode;lithium-ion battery;
 Cited by
B. Scrosati and J. Garche, Lithium batteries: Status, prospects and future, J. Power Sources, 195, 2419-2430 (2010). crossref(new window)

E. Karden, S. Ploumen, B. Fricke, T. Miller, and K. Snyder, Energy storage devices for future hybrid electric vehicles, J. Power Sources, 168, 2-11 (2007). crossref(new window)

C. J. Rydh and B. A. Sanden, Energy analysis of batteries in photovoltaic systems. Part I: Performance and energy requirements, Energy Convers. Manage., 46, 1957-1979 (2005). crossref(new window)

S. Chu and A. Majumdar, Opportunities and Challenges for a Sustainable Energy Future, Nature, 488, 294-303 (2012). crossref(new window)

J. R. Szczech and S. Jin, Nanostructured silicon for high capacity lithium battery anodes, Energy Environ. Sci., 4, 56-72 (2011). crossref(new window)

S. Ohara, J. Suzuki, K. Sekine, and T. Takamura, A thin film silicon anode for Li-ion batteries having a very large specific capacity and long cycle life, J. Power Sources, 136, 303-306 (2004). crossref(new window)

J. O. Besenhard, J. Yang, and M. Winter, Will advanced lithium- alloy anodes have a chance in lithium-ion batteries?, J. Power Sources, 68, 87-90 (1997). crossref(new window)

T. D. Hatchard and J. R. Dahn, In Situ XRD and Electrochemical Study of the Reaction of Lithium with Amorphous Silicon, J. Elctrochem. Soc., 151, 838-842 (2004). crossref(new window)

N. S. Choi, K. H. Yew, K. Y. Lee, M. S. Sung, H. Kim, and S. S. Kim, Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode, J. Power Sources, 161, 1254-1259 (2006). crossref(new window)

M. Winter and J. O. Besenhard, Electrochemical lithiation of tin and tin-based intermetallics and composites, Electrochim. Acta, 45, 31-50 (1999). crossref(new window)

X. H. Liu, L. Zhong, S. Huang, S. X. Mao, T. Zhu, and J. Y. Huang, Size-Dependent Fracture of Silicon Nanoparticles during Lithiation, ACS Nano, 6, 1522-1531 (2012). crossref(new window)

L. Xue, G. Xu, Y. Li, S. Li, K. Fu, Q. Shi, and X. Zhang, Carbon-Coated Si Nanoparticles Dispersed in Carbon Nanotube Networks As Anode Material for Lithium-Ion Batteries, ACS Appl. Mater. Interfaces, 5, 21-25 (2013). crossref(new window)

H. Wu, G. Chan, J. W. Choi, I. Ryu, Y. Yao, M. T. McDowell, S. W. Lee, A. Jackson, Y. Yang, L. Hu, and Y. Cui, Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control, Nat. Nanotechnol., 7, 310-315 (2012). crossref(new window)

S. Song, S. W. Kim, D. J. Lee, Y. G. Lee, K. M. Kim, C. H. Kim, J. K. Park, Y. M. Lee, and K. Y. Cho, Flexible Binder-Free Metal Fibril Mat-Supported Silicon Anode for High-Performance Lithium-Ion Batteries, ACS Appl. Mater. Interfaces, 6, 11544-11549 (2014). crossref(new window)

F. M. Courtel, S. Niketic, D. Duguay, Y. Abu-Lebdeh, and I. J. Davidson, Water-soluble binders for MCMB carbon anodes for lithium-ion batteries, J. Power Sources, 196, 2128-2134 (2011). crossref(new window)

J. Li, D. B. Le, P. P. Ferguson, and J. R. Dahn, Lithium polyacrylate as a binder for tin-cobalt-carbon negative electrodes in lithium-ion batteries, Electrochim. Acta, 55, 2991-2995 (2010). crossref(new window)

A. Magasinski, B. Zdyrko, I. Kovalenko, B. Hertzberg, R. Burtovyy, C. F. Huebner, T. F. Fuller, I. Luzinov, and G. Yushin, Toward Efficient Binders for Li-Ion Battery Si-Based Anodes: Polyacrylic Acid, ACS Appl. Mater. Interfaces, 2, 3004-3010 (2010). crossref(new window)

N. Ding, J. Xu, Y. Yao, G. Wegner, I. Lieberwirth, and C. Chen, Improvement of cyclability of Si as anode for Li-ion batteries, J. Power Sources, 192, 644-651 (2009). crossref(new window)

Y. Lee, J. Choi, M. H. Ryou, and Y. M. Lee, Polymeric Materials for Lithium-Ion Batteries (Separators and Binders), Polym. Sci. Technol., 24, 603-611 (2013).

M. Yoo, C. W. Frank, S. Mori, and S. Yamaguchi, Effect of poly(vinylidene fluoride) binder crystallinity and graphite structure on the mechanical strength of the composite anode in a lithium ion battery, Polymer, 44, 4197-4204 (2003). crossref(new window)

C. R. Jarvis, W. J. Macklin, A. J. Macklin, N. J. Mattingley, and E. Kronfli, Use of grafted PVDF-based polymers in lithium batteries, J. Power Sources, 97-98, 664-666 (2001). crossref(new window)

S. J. Park, H. Zhao, G. Ai, C. Wang, X. Song, N. Yuca, V. S. Battaglia, W. Yang, and G. Liu, Side-Chain Conducting and Phase-Separated Polymeric Binders for High-Performance Silicon Anodes in Lithium-Ion Batteries, J. Am. Chem. Soc., 137, 2565-2571 (2015). crossref(new window)

H. K. Park, B. S. Kong, and E. S. Oh, Effect of high adhesive polyvinyl alcohol binder on the anodes of lithium ion batteries, Electrochem. Commun., 13, 1051-1053 (2011). crossref(new window)

S. Komaba, K. Shimomura, N. Yabuuchi, T. Ozeki, H. Yui, and K. Konno, Study on Polymer Binders for High-Capacity SiO Negative Electrode of Li-Ion Batteries, J. Phys. Chem., 115, 13487-13495 (2011).

N. S. Choi, K. H. Yew, W. U. Choi, and S. S. Kim, Enhanced electrochemical properties of a Si-based anode using an electrochemically active polyamide imide binder, J. Power Sources, 177, 590-594 (2008). crossref(new window)

J. Choi, K. Kim, J. Jeong, K. Y. Cho, M. H. Ryou, and Y. M. Lee, Highly Adhesive and Soluble Copolyimide Binder: Improving the Long-Term Cycle Life of Silicon Anodes in Lithium-Ion Batteries, ACS Appl. Mater. Interfaces, 7, 14851-14858 (2015). crossref(new window)

T. Matsumoto and T. Kurosaki, Soluble and Colorless Polyimides from Bicyclo [2.2.2] octane-2, 3, 5, 6-tetracarboxylic 2, 3: 5, 6-Dianhydrides, Macromol., 30, 993-1000 (1997). crossref(new window)

K. Faghihi, M. Hajibeygi, and M. Shabanian, Synthesis and properties of new photosensitive and chiral poly(amide-imide)s based on bicyclo[2,2,2]oct-7-ene-2,3,5,6-tetracarboxylic diimide and dibenzalacetonemoieties in the main chain, Polym. Int., 59, 218-226 (2010).

Y. Tsuda, Y. Tanaka, K. Kamata, N. Hiyoshi, S. Mataka, Y. Matsuki, M. Nishikawa, S. Kawamura, and N. Bessho, Soluble polyimides based on 2, 3, 5-tricarboxycyclopentyl acetic dianhydride, Polym. J., 29, 574-579 (1997). crossref(new window)

S. H. Ha, A study on the synthesis and characteristics of soluble, thermal resistance polyimides using DAM(2,4-diamino mesitylene), MS Dissertation, Yonsei University, Seoul, Korea (1999).

L. Zhai, S. Yang, and L. Fan, Preparation and characterization of highly transparent and colorless semi-aromatic polyimide films derived from alicyclic dianhydride and aromatic diamines, Polymer, 53, 3529-3539 (2012). crossref(new window)

B. Son, M. H. Ryou, J. Choi, T. Lee, H. K. Yu, J. H. Kim, and Y. M. Lee, Measurement and Analysis of Adhesion Property of Lithium-Ion Battery Electrodes with SAICAS, ACS Appl. Mater. Interfaces, 6, 526-531 (2014). crossref(new window)