JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Fabrication and Characteristics of Mesophase Pitch-Based Graphite Foams Prepared Using PVA-AAc Solution
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Applied Chemistry for Engineering
  • Volume 26, Issue 6,  2015, pp.706-713
  • Publisher : The Korean Society of Industrial and Engineering Chemistry
  • DOI : 10.14478/ace.2015.1102
 Title & Authors
Fabrication and Characteristics of Mesophase Pitch-Based Graphite Foams Prepared Using PVA-AAc Solution
Kim, Ji-Hyun; Lee, Sangmin; Jeong, Euigyung; Lee, Young-Seak;
  PDF(new window)
 Abstract
Graphite foams (GFs) were prepared by adding different amounts of mesophase pitch (MP) into polyvinyl alcohol-acrylic acid (PVA-AAc) solution followed by the heat treatment. It was confirmed that the pore diameters of GFs were controlled by the slurry concentration, which was the mesophase content added in polymer solution, and their thermal conductivity and compressive strength were also controlled by porosities of GFs formed at different conditions. The resulting GFs in this study had the highest thermal conductivity of and compressive strength of at 0.69 in porosity. The thermal conductivity of MP based GFs increased approximately 23 times higher than that of using isotropic pitch based GFs due to the developed graphitic structure.
 Keywords
graphite foam;mesophase pitch;isotropic pitch;thermal conductivity;compressive strength;
 Language
Korean
 Cited by
1.
불소화 메조페이스 핏치로 제조된 그라파이트 폼의 물리/화학적 특성,김지현;김도영;이형익;이영석;

Korean Chemical Engineering Research, 2016. vol.54. 6, pp.830-837 crossref(new window)
 References
1.
M. Inagaki, J. Qiu, and Q. Guo, Carbon foam: Preparation and application, Carbon, 87, 128-152 (2015). crossref(new window)

2.
J. Klett, R. Hardy, E. Romine, C. Walls, and T. Burchell, High-thermal-conductivity, mesophase-pitch-derived carbon foams: effect of precursor on structure and properties, Carbon, 38, 953-973 (2000). crossref(new window)

3.
C. Chen, E. B. Kennel, A. H. Stiller, P. G. Stansberry, and J. W. Zondlo, Carbon foam derived from various precursors, Carbon, 44, 1535-1543 (2006). crossref(new window)

4.
S. Chand, Carbon fibers for composites, J. Mater. Sci., 35, 1303-1313 (2000). crossref(new window)

5.
R. Chen, R. Yao, W. Xia, and R. Zou, Electro/photo to heat conversion system based on polyurethane embedded graphite foam, Appl. Energy, 152, 183-188 (2015). crossref(new window)

6.
R. Prieto, E. Louis, and J. M. Molina, Fabrication of mesophase pitch-derived open-pore carbon foams by replication processing, Carbon, 50, 1904-1912 (2012). crossref(new window)

7.
L. Zhai, X. Liu, T. Li, Z. Feng, and Z. Fan, Vacuum and ultrasonic co-assisted electroless copper plating on carbon foams, Vacuum, 114, 21-25 (2015). crossref(new window)

8.
C. Calebrese, G. A. Eisman, D. J. Lewis, and L. S. Schadler, Swelling and related mechanical and physical properties of carbon nanofiber filled mesophase pitch for use as a bipolar plate material, Carbon, 48, 3939-3946 (2010). crossref(new window)

9.
Y. Cheng, C. Fang, J. Su, R. Yu, and T. Li, Carbonization behavior and mesophase conversion kinetics of coal tar pitch using a low temperature molten salt method, J. Anal. Appl. Pyrol., 109, 90-97 (2014). crossref(new window)

10.
R. Prieto, E. Louis, and J. M. Molina, Fabrication of mesophase pitch-derived open-pore carbon foams by replication processing, Carbon, 50, 1904-1912 (2012). crossref(new window)

11.
R. M. Always-Cooper, D. P. Anderson, and A. A. Ogale, Carbon black modification of mesophase pitch-based carbon fibers Carbon, 59, 40-48 (2013). crossref(new window)

12.
W. Lin, B. Sunden, and J. Yuan, A performance analysis of porous graphite foam heat exchangers in vehicles, Appl. Therm. Eng., 50, 1201-1210 (2013). crossref(new window)

13.
I. Solmus, Numerical investigation of heat transfer and fluid flow behaviors of a block type graphite foam heat sink inserted in a rectangular channel, Appl. Therm. Eng., 78, 605-615 (2015). crossref(new window)

14.
A. G. Straatman, N. C. Gallego, B. E. Thompson, and H. Hangan, Thermal characterization of porous carbon foam-convection in parallel flow, Int. J. Heat and Mass Transfer, 49, 1991-1998 (2006). crossref(new window)

15.
W. W. Focke, H. Badenhorst, S. Ramjee, H. J. Kruger, R. V. Schalkwyk, and B. Rand, Graphite foam from pitch and expandable graphite, Carbon, 73, 41-50 (2014). crossref(new window)

16.
H. Liu, T. Li, X. Wang, W. Zhang, and T. Zhao, Preparation and characterization of carbon foams with high mechanical strength using modified coal tar pitches, J. Anal. Appl. Pyrol., 110, 442-447 (2014). crossref(new window)

17.
K. Lafdi, M. Almajali, and O. Huzayyin, Thermal properties of copper-coated carbon foams, Carbon, 47, 2620-2626 (2009). crossref(new window)

18.
A. Yadav, R. Kumar, G. Bhatia, and G. L. Verma, Development of mesophase pitch derived high thermal conductivity graphite foam using a template method, Carbon, 49, 3622-3630 (2011). crossref(new window)

19.
M. Karthik, A. Faik, S. Doppiu, V. Roddatis, and B. D'Ajuanno, A simple approach for fabrication of interconnected graphitized macroporous carbon foam with uniform mesopore walls by using hydrothermal method, Carbon, 87, 434-443 (2015). crossref(new window)

20.
J. H. Kim and Y. S. Lee, Characteristics of a high compressive strength graphite foam prepared from pitches using a PVA-AAc solution, J. Ind. Eng. Chem., 30, 127-133 (2015). crossref(new window)

21.
C. Hou, Q. Zhang, Y. Li, and H. Wang, Graphene-polymer hydrogels with stimulus-sensitive volume changes, Carbon, 50, 1959-1965 (2012). crossref(new window)

22.
Z. Zhao, X. Wang, J. Qiu, J. Lin, D. Xu, C. Zhang, and M. Lv, X. Yang, Three-dimentional graphene-based hydrogel/aerogel materials, Rev. Adv. Mater. Sci., 36, 137-151 (2014).

23.
S. Kumar, M. Srivastava, Mesophase formation behavior in petroleum residues, Carbon Lett., 16(3), 171-182 (2015). crossref(new window)

24.
H. K Shin, M. Park, H. Y. Kim, and S. J. Park, Influence of oxidative atmosphere of the electron beam irradiation on cyclization of PAN-based fibers, Carbon Lett., 16(3), 219-221 (2015). crossref(new window)

25.
L. James, S. Austin, C. A. Moore, D. Stephens, K. K. Walsh, and G. Dale Wesson, Modeling the principle physical parameters of graphite carbon foam, Carbon, 48, 2418-2424 (2010). crossref(new window)

26.
S. Li, Y. Tian, Y. Zhong, X. Yan, Y. Song, Q. Guo, J. Shi, and L. Liu, Formation mechanism of carbon foams derived from mesophase pitch, Carbon, 49, 618-624 (2011). crossref(new window)

27.
J. H. Kim and Y. S. Lee, Preparation and characterization of graphite foams, J. Ind. Eng. Chem., Doi:10.1016/j.jiec.2015.09.003. (2015). crossref(new window)

28.
P. K. Pandey, P. Smitha, and N. S. Gajbhiye, Synthesis and characterization of nanostructured PZT encapsulated PVA-PAA hydrogel, J. Polym. Res., 15, 397-402 (2008). crossref(new window)

29.
M. S. Park, Y. Ko, M. J. Jung, and Y. S. Lee, Stabilization of pitch-based carbon fibers accompanying electron beam irradiation and their mechanical properties, Carbon Lett., 16(2), 121-126 (2015). crossref(new window)

30.
M. Karthik, A. Faik, S. Doppiu, V. Roddatis, and B. D'Aguanno, A simple approach for fabrication of interconnected graphitized macroporous carbon foam with uniform mesopore walls by using hydrothermal method, Carbon, 87, 434-443 (2015). crossref(new window)

31.
R. Prieto, E. Louis, and J. M. Molina, Fabrication of mesophase pitch-derived open-pore carbon foams by replication processing, Carbon, 50, 1904-1912 (2012). crossref(new window)

32.
Y. Chen, B. Z. Chen, X. C. Shi, H. Xu, Y. J. Hu, Y. Yuan, and N. B. Shen, Preparation of pitch-based carbon foam using polyurethane foam template, Carbon, 45, 2126-2139 (2007). crossref(new window)

33.
G. Chollon, S. Delettrez, and F. Langlais, Chemical vapour infiltration and mechanical properties of carbon open-cell foams, Carbon, 66, 18-30 (2014). crossref(new window)

34.
K. C. Leong and H. Y. Li, Theoretical study of the effective thermal conductivity of graphite foam based on a unit cell model, Int. J. Heat and Mass Transfer, 54, 5491-5496 (2011). crossref(new window)

35.
N. Bekoz and E. Oktay, Mechanical properties of low alloy steel foams: Dependency on porosity and pore size, Mater. Sci. Eng. A, 576, 82-90 (2013). crossref(new window)

36.
T. Araki, K. Asano, T. Awao, and H. Takita, Method for heavying polycyclic substances, US Patent 3,718,574 (1973).

37.
M. Calvo, R. Garcia, A. Arenillas, I. Suarez, and S. R. Moinelo, Carbon foams from coals. A preliminary study, Fuel, 84, 2184-2189 (2005). crossref(new window)

38.
F. Watanabe, S. Ishida, Y. Korai, I. Mochida, I. Kato, Y. Sakai, and M. Kamatsu, Pitch-based carbon fiber of high compressive strength prepared from synthetic isotropic pitch containing mesophase spheres, Carbon, 37, 961-967 (1999). crossref(new window)