JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Efficient Green Phosphorescent OLEDs with Hexaazatrinaphthylene Derivatives as a Hole Injection Layer
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Applied Chemistry for Engineering
  • Volume 26, Issue 6,  2015, pp.725-729
  • Publisher : The Korean Society of Industrial and Engineering Chemistry
  • DOI : 10.14478/ace.2015.1108
 Title & Authors
Efficient Green Phosphorescent OLEDs with Hexaazatrinaphthylene Derivatives as a Hole Injection Layer
Lee, Jae-Hyun; Lee, Jonghee;
  PDF(new window)
 Abstract
Organic light emitting diodes (OLEDs) are regarded as the next generation display and solid-state lighting due to their superb achievements from extensive research efforts on improving the efficiency and stability of OLEDs in addition to developing new materials. Herein, efficient green phosphorescent OLEDs were obtained by using hexaazatrinaphthylene (HAT) derivatives as a hole injection layer. External quantum and current efficiencies of OLEDs were enhanced from 8.8% and 30.8 cd/A to 13.6% and 47.7 cd/A, respectively by inserting a thin layer of HAT derivatives between the ITO and hole transporting layer. The enhancement of OLEDs was found to be originated from the inserted HAT derivatives, which resulted in the optimized hole-electron balance inside the emission layer.
 Keywords
organic light emitting diodes;hole injection layer;efficiency;
 Language
Korean
 Cited by
 References
1.
K.-H. Kim, S. Lee, C.-K. Moon, S.-Y. Kim, Y.-S. Park, J.-H. Lee, J. W. Lee, J. Huh, Y. You, and J.-J. Kim, Phosphorescent dye-based supramolecules for high-efficiency organic light-emitting diodes, Nat. commun., 5, 4769 (2014). crossref(new window)

2.
S.-Y. Kim, W.-I. Jeong, C. Mayr, Y.-S. Park, K.-H. Kim, J.-H. Lee, C.-K. Moon, W. Brutting, and J.-J. Kim, Organic Light-Emitting Diodes with 30% External Quantum Efficiency Based on a Horizontally Oriented Emitter, Adv. Funct. Mater., 23, 3896-3900 (2013). crossref(new window)

3.
E. Forsythe, M. Abkowitz, and Y. Gao, Tuning the Carrier Injection Efficiency for Organic Light-Emitting Diodes, J. Phys. Chem. B, 104, 3948-3952 (2000). crossref(new window)

4.
J.-H. Lee and J.-J. Kim, Interfacial doping for efficient charge injection in organic semiconductors, Phys. Status Solidi A, 209, 1399-1413 (2012). crossref(new window)

5.
K. Walzer, B. Maennig, M. Pfeiffer, and K. Leo, Highly Efficient Organic Devices Based on Electrically Doped Transport Layers, Chem. Rev., 107, 1233-1271 (2007). crossref(new window)

6.
L. Liao and K. P. Klubek, Power efficiency improvement in a tandem organic light-emitting diode, Appl. Phys. Lett., 92, 223311 (2008). crossref(new window)

7.
J.-H. Lee, S. Lee, J.-B. Kim, J. Jang, and J.-J. Kim, A high performance transparent inverted organic light emitting diode with 1,4,5,8,9,11-hexaazatriphenylenehexacarbonitrile as an organic buffer layer, J. Mater. Chem., 22, 15262-15266 (2012). crossref(new window)

8.
S. Lee, J.-H. Lee, J.-H. Lee, and J.-J. Kim, The Mechanism of Charge Generation in Charge-Generation Units Composed of p Doped Hole-Transporting Layer/HAT-CN/n-Doped Electron-Transporting Layers, Adv. Funct. Mater., 22, 855-860 (2012). crossref(new window)

9.
K. S. Yook, S. O. Jeon, and J. Y. Lee, Efficient hole injection by doping of hexaazatriphenylene hexacarbonitrile in hole transport layer, Thin Solid Films, 517, 6109-6111 (2009). crossref(new window)

10.
Y.-K. Kim, J. W. Kim, and Y. Park, Energy level alignment at a charge generation interface between 4,4′-bis(N-phenyl-1-naphthylamino) biphenyl and 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile, Appl. Phys. Lett., 94, 063305 (2009). crossref(new window)

11.
S. M. Park, Y. H. Kim, Y. Yi, H.-Y. Oh, and J. W. Kim, Insertion of an organic interlayer for hole current enhancement in inverted organic light emitting devices, Appl. Phys. Lett., 97, 063308 (2010). crossref(new window)

12.
S. Barlow, Q. Zhang, B. R. Kaafarani, C. Risko, F. Amy, C. K. Chan, B. Domercq, Z. A. Starikova, M. Y. Antipin, and T. V. Timofeeva, Synthesis, ionisation potentials and electron affinities of hexaazatrinaphthylene derivatives, Chem. -Eur. J., 13, 3537-3547 (2007). crossref(new window)

13.
B. R. Kaafarani, T. Kondo, J. Yu, Q. Zhang, D. Dattilo, C. Risko, S. C. Jones, S. Barlow, B. Domercq, and F. Amy, High Charge-Carrier Mobility in an Amorphous Hexaazatrinaphthylene Derivative, J. Am. Chem. Soc., 127, 16358-16359 (2005). crossref(new window)

14.
C. Falkenberg, K. Leo, and M. K. Riede, Improved photocurrent by using n-doped 2,3,8,9,14,15-hexachloro-5,6,11,12,17,18-hexaazatrinaphthylene as optical spacer layer in p-i-n type organic solar cells, J. Appl. Phys., 110, 124509 (2011). crossref(new window)

15.
F. Selzer, C. Falkenberg, M. Hamburger, M. Baumgarten, K. Müllen, K. Leo, and M. Riede, Improved organic p-i-n type solar cells with n-doped fluorinated hexaazatrinaphthylene derivatives HATNA-F6 and HATNA-F12 as transparent electron transport material, J. Appl. Phys., 115, 054515 (2014). crossref(new window)

16.
Y. E. Kim, H. Park, and J. J. Kim, Enhanced quantum efficiency in polymer electroluminescence devices by inserting a tunneling barrier formed by Langmuir-Blodgett films, Appl. Phys. Lett., 69, 599 (1996). crossref(new window)

17.
T. Yokoyama, D. Yoshimura, E. Ito, H. Ishii, Y. Ouchi, and K. Seki, Energy Level Alignment at Alq3/LiF/Al Interfaces Studied by Electron Spectroscopies: Island Growth of LiF and Size-Dependence of the Electronic Structures, Jpn. J. Appl. Phys., 42, 3666-3675 (2003). crossref(new window)

18.
Q.-T. Le, E. W. Forsythe, F. Nuesch, L. J. Rothberg, L. Yan, and Y. Gao, Interface formation between NPB and processed indium tin oxide, Thin Solid Films, 363, 42-46 (2003).

19.
C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, Nearly 100% internal phosphorescence efficiency in an organic light-emitting device, J. Appl. Phys., 90, 5048-5051 (2001). crossref(new window)

20.
R. Meerheim, S. Scholz, S. Olthof, G. Schwartz, S. Reineke, K. Walzer, and K. Leo, Influence of charge balance and exciton distribution on efficiency and lifetime of phosphorescent organic light-emitting devices, J. Appl. Phys., 104, 014510 (2008). crossref(new window)

21.
W. S. Jeon, T. J. Park, S. Y. Kim, R. Pode, J. Jang, and J.-H. Kwon, Ideal host and guest system in phosphorescent OLEDs, Org. Electron., 10, 240-246 (2009). crossref(new window)

22.
J. Li, Z. Si, C. Liu, C. Li, F. Zhao, Y. Duan, P. Chen, S. Liu, and B. Li, Highly efficient phosphorescent organic light-emitting devices based on Re(CO)3Cl-bathophenanthroline, Semicond. Sci. Tech., 22, 553-556 (2007). crossref(new window)

23.
C.-B. Moon, W. Song, M. Meng, N. H. Kim, J.-A. Yoon, W. Y. Kim, R. Wood, and P. Mascher, Luminescence of Rubrene and DCJTB molecules in organic light-emitting devices, J. Lumin., 146, 314-320 (2014). crossref(new window)

24.
S. H. Kim, J. Jang, and J. Y. Lee, High efficiency phosphorescent organic light-emitting diodes using carbazole-type triplet exciton blocking layer, Appl. Phys. Lett., 90, 223505 (2007). crossref(new window)

25.
S. H. Kim, J. Jang, and J. Y. Lee, Relationship between host energy levels and device performances of phosphorescent organic light-emitting diodes with triplet mixed host emitting structure, Appl. Phys. Lett., 91, 083511 (2007). crossref(new window)

26.
J. Y. Kim, N. H. Kim, J. W. Kim, J. S. Kang, J.-A. Yoon, S. I. Yoo, W. Y. Kim, and K. W. Cheah, Enhancement of external quantum efficiency and reduction of roll-off in blue phosphorescent organic light emitt diodes using TCTA inter-layer, Opt. Mater., 37, 120-124 (2014). crossref(new window)