JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Optimization of a Crystallization Process by Response Surface Methodology
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Applied Chemistry for Engineering
  • Volume 26, Issue 6,  2015, pp.730-736
  • Publisher : The Korean Society of Industrial and Engineering Chemistry
  • DOI : 10.14478/ace.2015.1109
 Title & Authors
Optimization of a Crystallization Process by Response Surface Methodology
Lee, Se-Eun; Kim, Jae-Kyeong; Han, Sang-Keun; Chae, Joo-Seung; Lee, Keun-Duk; Koo, Kee-Kahb;
  PDF(new window)
 Abstract
Cyclotrimethylene trinitramine (RDX) is a high explosive commonly used for military applications. Submicronization of RDX particles has been a critical issue in order to alleviate the unintended and accidental stimuli toward safer and more powerful performances. The purpose of this study is to optimize experimental variables for drowning-out crystallization applied to produce submicron RDX particles. Effects of RDX concentration, anti-solvent temperature and anti-solvent mass were analyzed by the central composite rotatable design. The adjusted determination coefficient of regression model was calculated to be 0.9984 having the p-value less than 0.01. Response surface plots based on the central composite rotatable design determined the optimum conditions such as RDX concentration of 3 wt%, anti-solvent temperature of and anti-solvent mass of 266 g. The optimum and experimental diameters of RDX particles were measured to be and , respectively. The regression model satisfactorily predicts the average diameter of RDX particles prepared by drowning-out crystallization. Structure of RDX crystals was found to be -form by X-ray diffraction analysis and FT-IR spectroscopy.
 Keywords
cyclotrimethylene trinitramine;drowning-out;central composite rotatable design;
 Language
Korean
 Cited by
 References
1.
S. M. Walley, J. E. Field, and M. W. Greenaway, Crystal Sensitivities of Energetic Materials, Mater. Sci. Technol., 22(4), 402-413 (2006). crossref(new window)

2.
J. T. Essel, Processing Energetic Materials with Supercritical Fluid Precipitation Techniques, Ph.D., Dissertation, Pennsylvania State University, Pennsylvania, USA (2012).

3.
J. Liu, W. Jiang, Q. Yang, J. Song, G. Z. Hao, and F. S. Li, Study of Nano-nitramine Explosives: Preparation, Sensitivity and Application, Def. Technol., 10(2), 184-189 (2014). crossref(new window)

4.
V. J. Bellitto, M. I. Melnik, D. N. Sorensen, and J. C. Chang, Predicting the Shock Sensitivity of Cyclotrimethylene-trinitramine, J. Therm. Anal. and Calorim., 102, 557-562 (2010). crossref(new window)

5.
R. W. Armstrong, C. S. Coffey, V. F. DeVost, and W. L. Elban, Crystal Size Dependence for Impact Initiation of Cyclotrimethylenetrinitramine Explosive, J. Appl. Phys., 68(3), 979-984 (1990). crossref(new window)

6.
P. Tao, D. C. He, and G. G. Xu, Study on the Preparation of Ultrafine RDX Using the Technology of High-speed Impinging Streams, Initiat. Pyrotech., 4, 23-30 (2004).

7.
A. M. Pennie, The Preparation of a Crystalline High Explosive of Controlled Particle Size by Precipitation with Water from Acetone Solution, Can. J. Chem. Eng., 36(2), 78-81 (1958). crossref(new window)

8.
R. Patel, P. Cook, C. Crane, P. Redner, D. Kapoor, H. Grau, and A. Gandzelko, Production and Coating of Nano-RDX Using Wet Milling, NDIA Insensitive Munitions and Energetic Materials Technology Symposium, October 15-18, Miami, USA (2007).

9.
V. Stepanov, Production of Nanocrystalline RDX by RESS: Process Development and Materials Characterization, Ph.D. Dissertation, New Jersey Institute of Technology, New Jersey, USA (2008).

10.
D. Spitzer, C. Baras, M. R. Schafer, F. Ciszek, and B. Siegert, Continuous Crystallization of Submicrometer Energetic Compounds, Propell. Explos. Pyrot., 36(1), 65-74 (2011).

11.
Y. V. Frolov, A. N. Pivkina, P. A. Ul'yanova, and S. A. Zav'yalov, Synthesis of Energy-Rich Nanomaterials, Combust. Explo. Shock Waves, 38(6), 709-713 (2002). crossref(new window)

12.
H. Masuhara, H. Nakanishi, and K. Sasaki, Single Organic Nanoparticles, 17-31, Springer-Verlag, New York, USA (2003).

13.
X. Song and F. Li, Dependence of Particle Size and Size Distribution on Mechanical Sensitivity and Thermal Stability of Hexahydro-1,3,5-Trinitro-1,3,5-Triazine, Def. Sci. J., 59(1), 37-42 (2009). crossref(new window)

14.
H. Chen, H. Ma, Y. Pei, D. Liu, and C. Lu, The Preparing Technology and Mechanical Sensitivity of Nanometer RDX, J. Ball, 15(3), 11-18 (2003).

15.
S. H. Park, Modern Design of Experiments, 521-571, Minyoug Pub., Seoul, Republic of Korea (2011).

16.
S. E. Lee, H. M. Shim, J. K. Kim, S. K. Han, K. D. Lee, J. S. Chae, and K. K. Koo, Preparation of spherical molecular explosive nanoparticles by solvent/anti-solvent crystallization, Theory Appl. Chem. Eng., 20(2), 1468 (2014).

17.
X. Guan and H. Yao, Optimization of Viscozyme L-assisted Extraction of Oat Bran Protein Using Response Surface Methodology, Food Chem., 106, 345-351 (2008). crossref(new window)

18.
R. M. O'Brien, A Caution Regarding Rules of Thumb for Variance Inflation Factors, Qual. Quant., 41, 673-690 (2007). crossref(new window)

19.
I. H. Yoon and S. Y. Lee, Modern Statistics, 344-349, Samyoung Publishing Corp., Seoul, Republic of Korea (1997).

20.
D. L. Pavia, G. M. Lampman, and G. S. Kriz, Introduction to Spectroscopy : A Guide for Students of Organic Chemistry, 2nd Ed., 63-71, Harcourt Brace & Company, Orlando, USA (1996).

21.
R. J. Karpowicz, S. T. Sergio, and T. B. Brill, b-Polymorph of hexahydro-1,3,5-trinitro-s-triazine. A Fourier Transform Infrared Spectroscopy Study of an Energetic Material, Ind. Eng. Chem. Prod. Res. Dev., 22, 363-365 (1983). crossref(new window)

22.
M. Herrmann and H. Fietzek, Investigation of the Micro-structure of Energetic Crystals by means of X-ray Powder Diffraction, Powder Diffr., 20(2), 105-108 (2005). crossref(new window)

23.
M. Herrmann and M. A. Bohn, Aging of RDX Crystals Investigated by X-ray Diffraction, IM & EM Technical Symposium, October 7-10, San Diego, USA (2013).