Advanced SearchSearch Tips
Effects of Aspect Ratio on Diffusive-Convection During Physical Vapor Transport of Hg2Cl2 with Impurity of NO
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Applied Chemistry for Engineering
  • Volume 26, Issue 6,  2015, pp.746-752
  • Publisher : The Korean Society of Industrial and Engineering Chemistry
  • DOI : 10.14478/ace.2015.1112
 Title & Authors
Effects of Aspect Ratio on Diffusive-Convection During Physical Vapor Transport of Hg2Cl2 with Impurity of NO
Kim, Geug-Tae;
  PDF(new window)
This study investigates the effects of aspect ratio (transport length-to-width) on diffusive-convection for physical vapor transport processes of system. For a system with the temperature difference of 20 K between an interface at the source material region and growing crystal interface, the linear temperature profiles at walls, the total molar fluxes at Ar
aspect ratio;physical vapor transport;
 Cited by
지상 및 미소중력 환경에서 물리적 승화법 공정에 미치는 불순물의 영향 분석: 염화제일수은에 대한 응용성,김극태;권무현;

공업화학, 2016. vol.27. 3, pp.335-341 crossref(new window)
Numerical Analysis for Impurity Effects on Diffusive-convection Flow Fields by Physical Vapor Transport under Terrestrial and Microgravity Conditions: Applications to Mercurous Chloride, Applied Chemistry for Engineering, 2016, 27, 3, 335  crossref(new windwow)
N. B. Singh, M. Gottlieb, G. B. Brandt, A. M. Stewart, R. Mazelsky, and M. E. Glicksman, Growth and characterization of mercurous halide crystals: mercurous bromide system, J. Crystal Growth, 137, 155-160 (1994). crossref(new window)

N. B. Singh, R. H. Hopkins, R. Mazelsky, and J. J. Conroy, Purification and growth of mercurous chloride single crystals, J. Crystal Growth, 75, 173-180 (1986). crossref(new window)

S. J. Yosim and S. W. Mayer, The mercury-mercuric chloride system, J. Phys. Chem., 64, 909-911 (1960). crossref(new window)

T. Yamaguchi, K. Ohtomo, S. Sato, N. Ohtani, M. Katsuno, T. Fujimoto, S. Sato, H. Tsuge, and T. Yano, Surface morphology and step instability on the (0001)C facet of physical vapor transport-grown 4H-SiC single crystal boules, J. Crystal Growth, 431, 24-31 (2015). crossref(new window)

C. Ohshige, T. Takahashi, N. Ohtani, M. Katsuno, T. Fujimoto, S. Sato, H. Tsuge, T. Yano, H. Matsuhata, and M. Kitabatake, Defect formation during the initial stage of physical vapor transport growth of 4H-SiC in the (1120) direction, J. Crystal Growth, 408, 1-6 (2014). crossref(new window)

J. G. Kim, J. H. Jeong, Y. Kim, Y. Makarov, and D. J. Choi, Evaluation of the change in properties caused by axial and radial Temperature gradients in silicon carbide crystal growth using the physical vapor transport method, Acta. Materialia, 77, 54-59 (2014). crossref(new window)

Y. Shi, J. Yang, H. Liu, P. Dai, B. Liu, Z. Jin, and G. Qiao, Fabrication and mechanism of 6H-type silicon carbide whiskers by physical vapor transport technique, J. Crystal Growth, 349, 68-74 (2012). crossref(new window)

M. A. Fanton, Q. Li, A. Y. Polyakov, and M. Skowronski, Electrical properties and deep levels spectra of bulk SiC crystals grown by hybrid physical-chemical vapor transport method, J. Crystal Growth, 300, 314-318 (2007). crossref(new window)

K. Semmelroth, M. Krieger, G. Pensl, H. Nagasawa, R. Pusche, M. Hundhausen, L. Ley, M. Nerding, and H. P. Strunk, Growth of cubic SiC single crystals by the physical vapor transport technique, J. Crystal Growth, 308, 241-246 (2007). crossref(new window)

E. R. Letts, J. S. Speck, and S. Nakamura, Effect of indium on the physical vapor transport growth of AIN, J. Crystal Growth, 311, 1060-1064 (2009). crossref(new window)

J. T. Mullins, F. Dierre, and B. K. Tanner, X-ray diffraction imaging of ZnTe Crystals grown by the multi-tube physical vapour transport technique, J. Crystal Growth, 431, 61-68 (2015).

L. Hongtao, S. Wenbin, M. Jiahua, and Z. Feng, Purification of $Cd_{0.9}Zn_{0.1}Te$ by physical vapor transport method, Mater. Lett., 59, 3837-3840 (2005). crossref(new window)

H. Cai, W. Wang, P. Liu, G. Wang, A. Liu, Z. He, Z. Cheng, S. Zhang, and M. Xia, Enhanced synthesis of Sn nanowires with aid of Se atom via physical vapor transport, J. Crystal Growth, 420, 42-46 (2015). crossref(new window)

S. Jo, S. Suzuki, and M. Yoshimura, Effect of solid-state polymerization on crystal morphology of a type of polydiacetylene single crystal obtained by physical vapor transport technique," Thin Solid Films, 554, 154-157 (2014). crossref(new window)

S. Collins, S. Vatavu, V. Evani, M. Khan, S. Bakhshi, V. Palekis, C. Rotaru, and C. Ferekides, Radiative recombination mechanisms in CdTe thin films deposited by elemental vapor transport, Thin Solid Films, 582, 139-145 (2015). crossref(new window)

S. Y. Hung, R. L. Kao, K. Y. Lin, C. C. Yang, K. S. Lin, Y. C. Chao, J. S. Wang, J. L. Shen, and K. C. Chiu, Characterization of facial and meridional $Alq_3$ thin films fabricated from physical vapor transport at high substrate temperatures, Mater. Chem. Phys., 154, 100-106 (2015). crossref(new window)

A. Choubey, P. Veeramani, A. T. G. Pym, J. T. Mullins, P. J. Sellin, A. W. Brinkman, I. Radley, A. Basu, and B. K. Tanner, Growth by the Multi-tube Physical Vapour Transport Method and Characterization of Bulk (Cd, Zn)Te, J. Crystal Growth, 352, 120-123 (2012). crossref(new window)

Y. Shi, J. F. Yang, H. Liu, P. Dai, B. Liu, Z. Jin, G. Qiao, and H. Li, Fabrication and Mechanism of 6H-type Silicon Carbide Whiskers by Physical Vapor Transport Technique, J. Crystal Growth, 349, 68-74 (2012). crossref(new window)

N. Zotov, S. Baumann, W. A. Meulenberg, and R. Vassen, La-Sr-Fe-Co Oxygen Transport Membranes on Metal Supports Deposited by Low Pressure Plasma Spraying-Physical Vapour Deposition, J. Membrane Sci., 442, 119-123 (2013). crossref(new window)

M. A. Fanton, Q. Li, A. Y. Polyakov, M. Skowronski, R. Cavalero, and R. Ray, Effects of Hydrogen on the Properties of SiC Crystals Grown by Physical Vapor Transport: Thermodynamic Considerations and Experimental Results, J. Crystal Growth, 287, 339-343 (2006). crossref(new window)

C. H. Su, M. A. George, W. Palosz, S. Feth, and S. L. Lehoczky, Contactless Growth of ZnSe Single Crystals by Physical Vapor Transport, J. Crystal Growth, 213, 267-275 (2000). crossref(new window)

C. Paorici, C. Razzetti, M. Zha, L. Zanotti, L. Carotenuto, and M. Ceglia, Physical Vapour Transport of Urotropine: One-Dimensional Model, Mater. Chem. and Phys., 66, 132-137 (2000). crossref(new window)

A. Nadarajah, F. Rosenberger, and J. Alexander, Effects of buoyancy- driven flow and thermal boundary conditions on physical vapor transport, J. Crystal Growth, 118, 49-59 (1992). crossref(new window)

F. Rosenberger, J. Ouazzani, I. Viohl, and N. Buchan, Physical vapor transport revised, J. Crystal Growth, 171, 270-287 (1997). crossref(new window)

P. A. Tebbe, S. K. Loyalka, and W. M. B. Duval, Finite element modeling of asymmetric and transient flowfields during physical vapor transport, Finite Elem. Anal. Des., 40, 1499-1519 (2004). crossref(new window)

M. Alsaady, R. Fu, B. Li, R. Boukhanouf, and Y. Yan, Thermo-physical properties and thermo-magnetic convection of ferrofluid, Appl. Therm. Eng., 88, 14-21 (2015). crossref(new window)

T. Qin, Z. Tukovic, and R. O. Grigoriev, Buoyancy-thermocapillary convection of volatile fluids under their vapors, Int. J. Heat Mass Transfer, 80, 38-49 (2015). crossref(new window)

F. Rosenberger and G. Muller, Interfacial transport in crystal growth, a parameter comparison of convective effects, J. Crystal Growth, 65, 91-104 (1983). crossref(new window)

S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corp., Washington D. C., (1980).

B. S. Jhaveri and F. Rosenberger, Expansive Convection in Vapor Transport across Horizontal Enclosures, J. Crystal Growth, 57, 57-64 (1982). crossref(new window)

G. T. Kim and M. H. Kwon, Effects of solutally dominant convection on physical vapor transport for a mixture of $Hg_2Br_2$ and $Br_2$ under microgravity environments, Korean Chem. Eng. Res., 52, 75-80 (2014). crossref(new window)