Advanced SearchSearch Tips
Advanced Treatment of Wastewater Using Symbiotic Co-culture of Microalgae and Bacteria
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Applied Chemistry for Engineering
  • Volume 27, Issue 1,  2016, pp.1-9
  • Publisher : The Korean Society of Industrial and Engineering Chemistry
  • DOI : 10.14478/ace.2016.1002
 Title & Authors
Advanced Treatment of Wastewater Using Symbiotic Co-culture of Microalgae and Bacteria
Mujtaba, Ghulam; Lee, Kisay;
  PDF(new window)
The co-culture system of microalgae and bacteria enables simultaneous removal of BOD and nutrients in a single reactor if the pair of microorganisms is symbiotic. In this case, nutrients are converted to biomass constituents of microalgae. This review highlights the importance and recent researches using symbiotic co-culture system of microalgae and bacteria in wastewater treatment, focusing on the removal of nitrogen and phosphorus. During wastewater treatment, the microalgae produces molecular oxygen through photosynthesis, which can be used as an electron acceptor by aerobic bacteria to degrade organic pollutants. The released during the bacterial mineralization can then be consumed by microalgae as a carbon source in photosynthesis. Microalgae and bacteria in the co-culture system could cooperate or compete each other for resources. In the context of wastewater treatment, positive relationships are prerequisite to accomplish the sustainable removal of nutrients. Therefore, the selection of compatible species is very important if the co-culture has to be utilized in wastewater treatment.
Microalgae;bacteria;symbiotic co-culture;nutrients removal;wastewater treatment;
 Cited by
S. Aslan and I. K. Kapdan, Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae, Ecol. Eng., 28, 64-70 (2006). crossref(new window)

G. Singh and P. B. Thomas, Nutrient removal from membrane bioreactor permeate using microalgae and in a microalgae membrane photoreactor, Bioresour. Technol., 117, 80-85 (2012). crossref(new window)

Y. Z. Peng, X. L. Wang, and B. K. Li, Anoxic biological phosphorus uptake and the effect of excessive aeration on biological phosphorus removal in the $A^2O$ process, Desalination, 189, 155-164 (2006). crossref(new window)

F. Clarens, E. P. Resurreccion, M. A. White, and L. M. Colosi, Environmental life cycle comparison of algae to other bioenergy feedstocks, Environ. Sci. Technol., 44, 1813-1819 (2010). crossref(new window)

Z. Guo and Y. W. Tong, The interactions between Chlorella vulgaris and algal symbiotic bacteria under photoautotrophic and photoheterotrophic conditions, J. Appl. Phycol., 26, 1483-1492 (2013).

T. Cai, S. Y. Park, and Y. Li, Nutrient recovery from wastewater streams by microalgae: Status and prospects, Renew. Sustain. Energy Rev., 19, 360-369 (2013). crossref(new window)

P. J. He, B. Mao, F. Lu, L. M. Shao, D. J. Lee, and J. S. Chang, The combined effect of bacteria and Chlorella vulgaris on the treatment of municipal wastewaters, Bioresour. Technol., 146, 562-568 (2013). crossref(new window)

R. Marin, L. G. M. Espinosa, and T. Stephenson, Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater, Bioresour. Technol., 101, 58-64 (2010). crossref(new window)

R. Munoz and B. Guieysse, Algal-bacterial processes for the treatment of hazardous contaminants: A review, Water Res., 40, 2799-2815 (2006). crossref(new window)

F. Gonzalez, B. M. Salces, and M. C. G. Gonzalez, Nitrogen transformations under different conditions in open ponds by means of microalgae-bacteria consortium treating pig slurry, Bioresour. Technol., 102, 960-966 (2011). crossref(new window)

Z. Liang, Y. Liu, F. Ge, Y. Xu, N. Tao, F. Peng, and M. Wong, Efficiency assessment and pH effect in removing nitrogen and phosphorus by algae-bacteria combined system of Chlorella vulgaris and Bacillus licheniformis, Chemosphere, 92, 1383-1389 (2013). crossref(new window)

L. E. Gonzalez and Y. Bashan, Increased growth of the microalga Chlorella vulgaris when coimmobilized and cocultured in alginate beads with the plant-growth-promoting bacterium Azospirillum brasilense, Appl. Environ. Microbiol., 66, 1527-1531 (2000). crossref(new window)

L. E. de-Bashan, H. Antoun, and Y. Bashan, Cultivation factors and population size control the uptake of nitrogen by the microalgae Chlorella vulgaris when interacting with the microalgae growth-promoting bacterium Azospirillum brasilense, FEMS Microbiol. Ecol., 54, 197-203 (2005). crossref(new window)

Vasseur, G. Bougaran, M. Garnier, J. Hamelin, C. Leboulanger, M. L. Chevanton, B. Mostajir, B. Sialve, J. P. Steyer, and E. Fouilland, Carbon conversion efficiency and population dynamics of a marine algae-bacteria consortium growing on simplified synthetic digestate: First step in a bioprocess coupling algal production and anaerobic digestion, Bioresour. Technol., 119, 79-87 (2012). crossref(new window)

B. E. Rittmann, Opportunities for renewable bioenergy using microorganisms, Biotechnol. Bioeng., 100, 203-212 (2008). crossref(new window)

V. V. Unnithan, A. Unc, and G. B. Smith, Mini-review: A priori considerations for bacteria-algae interactions in algal biofuel systems receiving municipal wastewaters, Algal. Res., 4, 35-40 (2014). crossref(new window)

Y. Park, K.-W. Je, K. Lee, S.-E. Jung, and T.-J. Choi, Growth promotion of Chlorella ellipsoidea by co-inoculation with Brevundimonas sp. isolated from the microalga, Hydrobiologia, 598, 219-228 (2007).

S. R. Subashchandrabose, B. Ramakrishnan, M. Megharaj, K. Venkateswarlu, and R. Naidu, Consortia of cyanobacteria/microalgae and bacteria: Biotechnological potential, Biotechnol. Adv., 29, 896-907 (2011). crossref(new window)

G. Y. Rhee, Competition between an alga and an aquatic bacterium for phosphate. Limnol. Oceanogr., 17, 505-514 (1972). crossref(new window)

Q. Liang, W. Renjun, Z. Peng, C. Ruinan, Z. Wenli, T. Liuqing, and T. Xuexi, Interaction between Chlorella vulgaris and bacteria: interference and resource competition, Acta Oceanol. Sin., 33, 135-140 (2014). crossref(new window)

R. Delucca and M. D. McCracken, Observations on interactions between naturally-collected bacteria and several species of algae, Hydrobiologia, 55, 71-75 (1977). crossref(new window)

J. Liu, A. J. Lewitus, J. W. Kempton, and S. B. Wilde, The association of algicidal bacteria and raphidophyte blooms in South Carolina brackish detention ponds. Harmful Algae, 7, 184-193 (2008). crossref(new window)

L. A. Krometis, G. W. Characklis, P. N. Drummey, and M. D. Sobsey, Comparison of the presence and partitioning behavior of indicator organisms and Salmonella spp. In an urban watershed, J. Water Health, 08, 44-59 (2010). crossref(new window)

J. Lee, D. H. Cho, R. Ramanan, B. H. Kim, H.-M. Oh, and H. S. Kim, Microalgae-associated bacteria play a key role in the flocculation of Chlorella vulgaris, Bioresour. Technol., 131, 195-201 (2013). crossref(new window)

G. Schumacher, T. Blume, and I. Sekoulov, Bacteria reduction and nutrient removal in small wastewater treatment plants by an algal biofilm, Water Sci. Technol., 47, 195-202 (2003). crossref(new window)

F. Ribalet, L. Intertaglia, P. Lebaron, and R. Casotti, Differential effect of three polyunsaturated aldehydes on marine bacterial isolates, Aquat. Toxicol., 86, 249-255 (2008). crossref(new window)

M. DellaGreca, A. Zarrelli, P. Fergola, M. Cerasuolo, A. Pollio, and G. Pinto, Fatty acids released by Chlorella vulgaris and their role in interference with Pseudokirchneriella subcapitata: Experiments and modelling. J. Chem. Ecol., 36, 339-349 (2010). crossref(new window)

K. Fukami, T. Nishijima, and Y. Ishida, Stimulative and inhibitory effects of bacteria on the growth of microalgae, Hydrobiologia, 358, 185-191 (1997). crossref(new window)

J. J. Cole, Interactions between Bacteria and Algae in Aquatic Ecosystems, Ann. Rev. Ecol. Syst., 13, 291-314 (1982). crossref(new window)

P. Fergola, M. Cerasuolo, A. Pollio, G. Pinto, and M. DellaGreca, Allelopathy and competition between Chlorella vulgaris and Pseudokirchneriella subcapitata: Experiments and mathematical model, Ecol. Modell., 208, 205-214 (2007). crossref(new window)

M. Danger, C. Oumarou, D. Benest, and G. Lacroix, Bacteria can control stoichiometry and nutrient limitation of phytoplankton, Funct. Ecol., 21, 202-210 (2007). crossref(new window)

V. Lebsky, L. E. Gonzalez-Bashan, and Y. Bashan, Ultrastructure of interaction in alginate beads between the microalga Chlorella vulgaris with its natural associative bacterium Phyllobacterium myrsinacearum and with the plant growth-promoting bacterium Azospirillum brasilense, Can. J. Microbiol., 47, 1-8 (2001). crossref(new window)

X. Ma, W. Zhou, Z. Fu, Y. Cheng, M. Min, Y. Liu, Y. Zhang, P. Chen, and R. Ruan, Effect of wastewater-borne bacteria on algal growth and nutrients removal in wastewater-based algae cultivation system, Bioresour. Technol., 167, 8-13 (2014). crossref(new window)

M. N. Byappanahalli, R. Sawdey, S. Ishii, D. A. Shively, J. A. Ferguson, R. L. Whitman, and M. J. Sadowsky, Seasonal stability of cladophora-associated Salmonella in lake Michigan watersheds, Water Res., 43, 806-814 (2009). crossref(new window)

M. T. Croft, A. D. Lawrence, E. Raux-Deery, M. J. Warren, and A. G. Smith, Algae acquire vitamin B12 through a symbiotic relationship with bacteria, Nature, 438, 90-93 (2005). crossref(new window)

C. Bouteleux, S. Saby, D. Tozza, J. Cavard, V. Lahoussine, P. Hartemann, and L. Mathieu, Escherichia coli behavior in the presence of organic matter released by algae exposed to water treatment chemicals, Appl. Environ. Microbiol., 71, 734-740 (2005). crossref(new window)

G. M. Wolfaardt, J. R. Lawrence, R. D. Robarts, and D. E. Caldwell, The role of interactions, sessile growth, and nutrient amendments on the degradative efficiency of a microbial consortium, Can. J. Microbiol., 40, 331-340 (1994). crossref(new window)

H. Mazur, A. Konop, and R. Synak, Indole-3-acetic acid in the culture medium of two axenic green microalgae. J. Appl. Phycol., 13, 35-42 (2001). crossref(new window)

J.-L. Mouget, A. Dakhama, M. C. Lavoie, and J. Noue, Algal growth enhancement by bacteria: Is consumption of photosynthetic oxygen involved? FEMS Microbiol. Ecol., 18, 35-43 (1995). crossref(new window)

Y. Zhang, H. Su, Y. Zhong, C. Zhang, Z. Shen, W. Sang, G. Yan, and X. Zhou, The effect of bacterial contamination on the heterotrophic cultivation of Chlorella pyrenoidosa in wastewater from the production of soybean products, Water Res., 46, 5509-5516 (2012). crossref(new window)

J. N. Rooney-Verga, M. W. Giewat, M. C. Savin, S. Sood, M. LeGresley, and J. L. Martin, Links between phytoplankton and bacterial community dynamics in a coastal marine environment, Microbiol. Ecol., 49, 163-175 (2005). crossref(new window)

J.-P. Hernandez, L. E. de-Bashan, D. J. Rodriguez, Y. Rodriguez, and Y. Bashan, Growth promotion of the freshwater microalga Chlorella vulgaris by the nitrogen-fixing, plant growth-promoting bacterium Bacillus pumilus from arid zone soils, Eur. J. Soil Biol., 45, 88-93 (2009). crossref(new window)

L. E. de-Bashan, M. Moreno, J. P. Hernandez, and Y. Bashan, Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae Chlorella vulgaris coimmobilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense, Water Res., 36, 2941-2948 (2002). crossref(new window)

C. E. Riquelme, Interaction between Microalgae and Bacteria in Coastal Seawater. PhD Dissertation, Kyoto University, Japan (1988).

J. Du, S. Cheng, C. Shao, Y. Lv, G. Pu, X. Ma, Y. Jia, and X. Tian, Growth stimulation of Microcystis aeruginosa by a bacterium from hyper-eutrophic water (Taihu Lake, China), Aquat. Ecol., 47, 303-313 (2013). crossref(new window)

I. Suminto and K. Hirayama, Effects of bacterial coexistence on the growth of a marine diatom Chaetoceros gracilis. Fish. Sci., 62, 40-43 (1996). crossref(new window)

L. E. de-Bashan and Y. Bashan, Immobilized microalgae for removing pollutants: Review of practical aspects, Bioresour. Technol., 101, 1611-1627 (2010). crossref(new window)

R. M. M. Abed, Interaction between cyanobacteria and aerobic heterotrophic bacteria in the degradation of hydrocarbons, Int. Biodeterior. Biodegradation, 64, 58-64 (2010). crossref(new window)

F. G. Acien, C. V. Gonzalez, J. M. Fernandez, M. G. Gonzalez, J. Moreno, E. Sierra, M. G. Guerrero, and E. Molina, Removal of $CO_2$ from flue gases coupled to the photosynthetic generation of organic matter by cyanobacteria, Nat. Biotechnol., 25, S265 (2009).

R. Munoz, M. Jacinto, B. Guieysse, and B. Mattiasson, Combined carbon and nitrogen removal from acetonitrile using algal-bacterial bioreactors. Appl. Microbiol. Biotechnol., 67, 699-707 (2005). crossref(new window)

G. Tchobanoglous, F. L. Burton, and H. D. Stensel, Wastewater Engineering: Treatment and Reuse. McGraw-Hill, New York, NY (2003).

I. de Godos, V. A. Vargas, S. Blanco, M. C. Gonzalez, R. Soto, P. A.-E Garcia, E. Becares, and R. Munoz, A comparative evaluation of microalgae for the degradation of piggery wastewater under photosynthetic oxygenation, Bioresour. Technol., 101, 5150-5158 (2010). crossref(new window)

R. O. Canizares-Villanueva, Heavy metals biosorption by using microbial biomass, Rev. Latinoam. Microbiol., 42, 131-143 (2000).

W. Mulbry, E. K. Westhead, C. Pizarro, and L. Sikora, Recycling of manure nutrients: use of algal biomass from dairy manure treatment as a slow release fertilizer, Bioresour. Technol., 96, 451-458 (2005). crossref(new window)

M. Medina and U. Neis, Symbiotic algal bacterial wastewater treatment: effect of food to microorganism ratio and hydraulic retention time on the process performance, Water Sci. Technol., 55, 165-171 (2007).

M. A. Aziz and W. J. Ng, Industrial wastewater treatment using an activated algae-reactor, Water Sci. Technol., 28, 71-76 (1993). crossref(new window)

C. J. Ogbonnna, H. Yoshizawa1, and H. Tanaka, Treatment of high strength organic wastewater by a mixed culture of photosynthetic microorganisms, J. Appl. Phycol., 12, 277-284 (2000). crossref(new window)

C. S. Lee, S.-A. Lee, S.-R. Ko, H.-M. Oh, and C.-Y. Ahn, Effects of photoperiod on nutrient removal, biomass production, and algal- bacterial population dynamics in lab-scale photobioreactors treating municipal wastewater, Water Res., 68, 680-691 (2015). crossref(new window)

X. Zhao, Y. Zhou, S. Huang, D. Qiu, L. Schideman, X. Chai, and Y. Zhao, Characterization of microalgae-bacteria consortium cultured in landfill leachate for carbon fixation and lipid production, Bioresour. Technol., 156, 322-328 (2014). crossref(new window)

C. Gonzalez, J. Marciniak, S. Villaverde, C. Leon, P. A. Garcia, and R. Munoz, Efficient nutrient removal from swine manure in a tubular biofilm photo-bioreactor using algae-bacteria consortia, Water Sci. Technol., 58, 95-102 (2008). crossref(new window)

H.-Y. Ren, B.-F. Liu, F. Kong, L. Zhao, and N. Ren, Hydrogen and lipid production from starch wastewater by co-culture of anaerobic sludge and oleaginous microalgae with simultaneous COD, nitrogen and phosphorus removal, Water Res., 85, 404-412 (2015). crossref(new window)

G. Mujtaba, M. Rizwan, and K. Lee, Simultaneous removal of inorganic nutrients and organic carbon by symbiotic co-culture of Chlorella vulgaris and Pseudomonas putida, Biotechnol. Bioprocess Eng., 20(6), 1114-1122 (2015). crossref(new window)

H. Kawai, V. M. Grieco, and P. Jureidini, A study of the treatability of pollutants in high rate photosynthetic ponds and the utilization of the proteic potential of algae which proliferate in the ponds, Environ. Technol. Lett., 5, 505-515 (1984). crossref(new window)

N. Mallick and L. C. Rai, Removal of inorganic ions from wastewaters by immobilized microalgae, World J. Microbiol. Biotechnol., 10, 439-443 (1994). crossref(new window)

E. Zhang, B. Wang, Q. Wang, S. Zhang, and B. Zhao, Ammonia-nitrogen and orthophosphate removal by immobilized Scenedesmus sp. isolated from municipal wastewater for potential use in tertiary treatment, Bioresour. Technol., 99, 3787-3793 (2008). crossref(new window)

K. Liu, J. Li, H. Qiao, A. Lin, and G. Wang, Immobilization of Chlorella sorokiniana GXNN 01 in alginate for removal of N and P from synthetic wastewater. Bioresour. Technol., 114, 26-32 (2012). crossref(new window)

E. Posadas, P. A. G. Encina, A. Soltau, A. Dominguez, I. Diaz, and R. Munoz, Carbon and nutrient removal from centrates and domestic wastewater using algal-bacterial biofilm bioreactors, Bioresour. Technol., 139, 50-58 (2013). crossref(new window)

N. C. Boelee, H. Temmink, M. Janssen, C. J. N. Buisman, and R. H. Wijffels, Nitrogen and phosphorus removal from municipal wastewater effluent using microalgal biofilms, Water Res., 45, 5925-5933 (2011). crossref(new window)

F. Lananan, S. H. A. Hamid, W. N. S. Din, N. Ali, H. Khatoon, A. Jusoh, and A. Endut, Symbiotic bioremediation of aquaculture wastewater in reducing ammonia and phosphorus utilizing Effective Microorganism (EM-1) and microalgae (Chlorella sp.), Int. Biodeter. Biodegradation, 95, 127-134 (2014). crossref(new window)

D. Hernandez, B. Riano, M. Coca, and M. C. G. Gonzalez, Treatment of agro-industrial wastewater using microalgae-bacteria consortium combined with anaerobic digestion of the produced biomass, Bioresour. Technol., 135, 598-603 (2013). crossref(new window)