JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Mechanism for the Oxidation Reaction of Alcohols Using Cr(VI)-Pyrazine Complex
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Applied Chemistry for Engineering
  • Volume 27, Issue 1,  2016, pp.110-114
  • Publisher : The Korean Society of Industrial and Engineering Chemistry
  • DOI : 10.14478/ace.2015.1118
 Title & Authors
Mechanism for the Oxidation Reaction of Alcohols Using Cr(VI)-Pyrazine Complex
Park, Young Cho; Kim, Young Sik;
  PDF(new window)
 Abstract
Cr(VI)-pyrazine complex (PZCC) was synthesized by the reaction of pyrazine with chromium (VI) trioxide in 6 M HCl. The structure was characterized using IR spectroscopy and inductively coupled plasma (ICP). The oxidation of benzyl alcohol using PZCC in various solvents showed that the reactivity increased with the increase of the dielectric constant, in the order: N,N`-dimethylform-amide > acetone > chloroform > cyclohexene. In the presence of N,N`-dimethylformamide solvent with an acidic catalyst such as sulfuric acid ( solution), PZCC oxidized benzyl alcohol (H) and its derivatives (, , , m-Cl, ). Electron-donating substituents accelerated the reaction rate, whereas electron acceptor groups retarded the reaction rate. Hammett reaction constant () was -0.70 (308 K). The observed experimental data were used to rationalize the hydride ion transfer in the rate-determining step.
 Keywords
PZCC;substituted benzyl alcohol;Hammett reaction constant ();hydride ion transfer;rate-determining step;
 Language
Korean
 Cited by
 References
1.
H. B. Davis, R. M. Sheets, and W. W. Pandler, High Valent Chromium Heterocyclic Complexes-ll: New Selective and Mild Oxidants, Heterocyc-les, 22, 2029-2035 (1984). crossref(new window)

2.
M. R. Pressprich, R, D. Willett, and H. B. Davis, Peparation and Crystal Structure of Dipyrazinium Trichromate and Bond Length Correlation for Chromate Anions of the Form $CrnO_3n^+_{12}^-$, Inorg. Chem., 27, 260-264 (1988). crossref(new window)

3.
K. K. Banerji, Kinetic Study of the Oxidation of Substituted Benzyl Alcohols by Ethyl Chlorochromate, Bull. Chem. Soc. Japan, 61, 1767-1771 (1988). crossref(new window)

4.
M. K. Mahanti and D. Dey, Kinetics of Oxidation of Substituted Benzyl Alcohols by Quinolinium Dichromate, J. Org. Chem., 55, 5848-5850 (1990). crossref(new window)

5.
M. K. Mahanti, B. Kuotsu, and E. Tiewsoh, Quinolinium Dichromate Oxidation of Diols: A Kinetics Study, J. Org. Chem., 61, 8875-8877 (1996). crossref(new window)

6.
M. K. Mahanti, Kinetics and Mechanism of the Oxidative Cleavage of Unsaturated Acids by Quinolinium Dichromate, Bull. Chem. Soc. Japan, 67, 2320-2322 (1994). crossref(new window)

7.
G. D. Yadav, Mechanistic and Kinetic Investigation of Liquid-Liquid Phase Transfer Catalyzed Oxidation of Benzyl Chloride to Benzaldehyde, J. Phys. Chem., 101, 36-48 (1997). crossref(new window)

8.
I. S. Koo, J. S. Kim, and S. K. An, Kinetic Studies on Solvolyses of Subsitituted Cinnamoyl Chlorides in Alcohol-Water Mixture, J. Korean Chem. Soc., 43, 527-534 (1999).

9.
R. Tayebee, Simple Heteropoly Acids as Water Tolerant Catalysts in the Oxidation of Alcohols with 34% Hydrogen Peroxide, A Mechanistic Approach, J. Korean Chem. Soc., 52, 23-29 (2008). crossref(new window)

10.
Y. S. Kim, H. Choi, and I. S. Koo, Kinetics and Mechanism of Nucleophilic Substittution Reaction of 4-Subsitituted-2,6-dinitrochlorobenzene with Benzylamines in MeOH-MeCN Mixtures, Bull. Korean Chem. Soc., 31, 3279-3282 (2010). crossref(new window)

11.
M. K. Mahanti, Quinolinium Dichromate Oxidations Kinetics and Mechanism of the Oxidative Cleavage of Styrenes, J. Org. Chem., 58, 4925-4928 (1993). crossref(new window)

12.
G. D. Yadav, Mechanistic and Kinetic Investigation of Liquid-Liquid Phase Transfer Catalyzed Oxidation of Benzyl Chloride to Benz aldehyde, J. Phys. Chem., 101, 36-40 (1997). crossref(new window)

13.
M. K. Mahanti, Kinetics and Mechanism of the Oxidative Cleavage of Unsaturated Acids by Quinolinium Dichromate, Bull. Chem. Soc. Japan, 67, 2320-2324 (1994). crossref(new window)

14.
M. K. Mahanti, Quinolinium Dichromate Oxidations Kinetics and Mechanism of the Oxidative Cleavage of Styrenes, J. Org. Chem., 58, 4925-4928 (1993). crossref(new window)