JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Synthesis and Infrared Light Reflecting Characteristics of TiO2/Mica Hybrid Composites
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Applied Chemistry for Engineering
  • Volume 27, Issue 1,  2016, pp.16-20
  • Publisher : The Korean Society of Industrial and Engineering Chemistry
  • DOI : 10.14478/ace.2015.1073
 Title & Authors
Synthesis and Infrared Light Reflecting Characteristics of TiO2/Mica Hybrid Composites
Kil, Hyun Suk; Rhee, Seog Woo;
  PDF(new window)
 Abstract
In this work, we describe the synthesis and infrared light reflecting characteristics of /mica hybrid composites. /mica composite materials were obtained by the hydrolysis and condensation reaction of titanium isopropoxide in an aqueous solution of acetic acid in the presence of mica particles. Amorphous phase of on the surface of mica was converted to the crystalline rutile phase via anatase phase by heat treatment (, 1-3 h) of /mica composite materials, and the size of crystals was controlled by heat treatment conditions. Physicochemical properties of mica and /mica composites were investigated using FE-SEM, ED-XRF, and PXRD. The solar reflectance of /mica composites in the near IR region (780~2,500 nm) measured using a diffuse reflectance NIR spectrophotometer was 88.6%, which is rather higher than that of calcined pure mica (86.6%). Therefore, /mica composites can be used as NIR light reflective pigments.
 Keywords
titanium dioxide;mica;light reflecting material;composite;paint pigment;
 Language
Korean
 Cited by
 References
1.
I. E. Kochevar, M. A. Pathak, and J. A. Parrish, Photophysics, photochemistry, and photobiology. In: I. M. Freedberg, A. Z. Eisen, S. I. Katz, K. Wolff, L. A. Goldsmith, K. F. Austen, and T. B. Fitzpatrick (eds.). Fitzpatrick's Dermatology in General Medicine, 5th ed. 220-229, McGraw-Hill, New York, USA (1999).

2.
H. H. Kim, Urban heat island, Int. J. Remote Sensing, 13, 2319-2336 (1992). crossref(new window)

3.
Y. Matsuo, New developments of high-reflective materials, 3-12, CMC, Tokyo, Japan (2010).

4.
M. Dahl, Y. Liu, and Y. Yin, Composite titanium dioxide nanomaterials, Chem. Rev., 114, 9853-9889 (2014). crossref(new window)

5.
L. Sang, Y. Zhao, and C. Burda, $TiO_2$ nanoparticles as functional building blocks, Chem. Rev., 114, 9283-9318 (2014). crossref(new window)

6.
M. Cargnello, T. R. Gordon, and C. B. Murray, Solution-phase synthesis of titanium dioxide nanoparticles and nanocrystals, Chem. Rev., 114, 9319-9345 (2014). crossref(new window)

7.
P. Jeevanandam, R. S. Mulukutla, M. Phillips, S. Chaudhuri, L. E. Erickson, and K. J. Klabunde, Near infrared reflectance properties of metal oxide nanoparticles, J. Phys. Chem. C, 111, 1912-1918 (2007). crossref(new window)

8.
H. -X. Wu, T. -J. Wang, and Y. Jin, Morphology "phase diagram" of the hydrous alumina coating on $TiO_2$ particles during aqueous precipitation, Ind. Eng. Chem. Res., 45, 5274-5278 (2006). crossref(new window)

9.
J. Zou, P. Zhang, C. Liu, and Y. Peng, Highly dispersed (Cr,Sb)-co-doped rutile pigments of cool color with high near-infrared reflectance, Dyes Pigm., 109, 113-119 (2014). crossref(new window)

10.
H. R. Hedayati, A. A. S. Alvani, H. Sameie, R. Salimi, S. Moosakhani, F. Tabatabaee, and A. A. Zarandi, Synthesis and characterization of $Co_{1-x}Zn_xCr_{2y}Al_yO_4$ as a near-infrared reflective color tunable nano-pigment, Dyes Pigm., 113, 588-595 (2015). crossref(new window)

11.
S. Jose, A. Prakash, S. Laha, S. Natarajan, and M. L. Reddy, Green colored nano-pigments derived from $Y_2BaCuO_5$: NIR reflective coatings, Dyes Pigm., 107, 118-126 (2014). crossref(new window)

12.
S. Kumar, N. K. Verma, and M. L. Singla, Study on reflectivity and photostability of Al-doped $TiO_2$ nanoparticles and their reflectors, J. Mater. Res., 28, 521-528 (2013). crossref(new window)

13.
N. Kiomarsipour, R. S. Razavi, K. Ghani, and M. Kioumarsipour, Evaluation of shape and size effects on optical properties of ZnO pigment, Appl. Surf. Sci., 270 33-38 (2013). crossref(new window)

14.
J. Panpranot, K. Kontapakdee, and P. Praserthdam, Effect of $TiO_2$ crystalline phase composition on the physicochemical and catalytic properties of Pd/$TiO_2$ in selective acetylene hydrogenation, J. Phys. Chem. B, 110, 8019-8024 (2006). crossref(new window)

15.
S. Yang, Y. C. Zheng, Y. Hou, X. H. Yang, and H. G. Yang, Anatase $TiO_2$ with nanopores for dye-sensitized solar cells, Phys. Chem. Chem. Phys., 16, 23038-23043 (2014). crossref(new window)

16.
V. N. Koparde and P. T. Cummings, Phase transformations during sintering of titania nanoparticles, ACS Nano, 2, 1620-1624 (2008). crossref(new window)

17.
S. Kumar, N. K. Verma, and M. L. Singla, Size dependent reflective properties of $TiO_2$ nanoparticles and reflectors made thereof, Dig. J. Nanomater. Bios., 7, 607-619 (2012).

18.
W. E. Vargas, Optimization of the diffuse reflectance of pigmented coatings taking into account multiple scattering, J. Appl. Phys., 88, 4079-4084 (2000). crossref(new window)

19.
J. -M. Oh, T. T. Biswick, and J. -H. Choy, Layered nanomaterials for green materials, J. Mater. Chem., 19, 2553-2563 (2009). crossref(new window)

20.
M. I. Carretero and M. Pozo, Clay and non-clay minerals in the pharmaceutical and cosmetic industries part II. Active ingredients, Appl. Clay Sci., 47 171-181 (2010). crossref(new window)

21.
P. M. T. Cavalcante, M. Dondi, G. Guarini, F. M. Barros, and A. B. da Luz, Ceramic application of mica titania pearlescent pigments, Dyes Pigm., 74, 1-8 (2007). crossref(new window)

22.
H. H. Murray, Traditional and new applications for kaolin, smectite, and palygorskite: A general overview, Appl. Clay Sci., 17, 207-221 (2000). crossref(new window)

23.
Q. Gao, X. Wu, and Y. Fan, Solar spectral optical properties of rutile $TiO_2$ coated mica-titania pigments, Dyes Pigm., 109, 90-95 (2014). crossref(new window)

24.
T. Kaneko, M. Fujii, T. Kodama, and Y. Kitayama, Synthesis of titania pillared mica in aqueous solution of acetic acid, J. Porous Mater., 8, 99-109 (2001). crossref(new window)

25.
C. Marcos, Y. C. Arango, and I. Rodriguez, X-ray diffraction studies of the thermal behaviour of commercial vermiculites, Appl. Clay Sci., 42, 368-378 (2009). crossref(new window)

26.
J. -H. Yang, H. Piao, A. Vinu, A. A. Elzatahry, S. -M. Paek, and J. -H. Choy, $TiO_2$-pillared clays with well-ordered porous structure and excellent photocatalytic activity, RSC Adv., 5, 8210-8215 (2015). crossref(new window)

27.
E. Finocchio, I. Baccini, C. Cristiani, G. Dotelli, P. G. Stampino, and L. Zampori, Hybrid organo-inorganic clay with nonionic interlayers. Mid- and near-IR spectroscopic studies, J. Phys. Chem. A, 115, 7484-7493 (2011). crossref(new window)

28.
J. G. P. W. Clevers, L. Kooistra, and M. E. Schaepman, Using spectral information from the NIR water absorption features for the retrieval of canopy water content, Int. J. Appl. Earth Obs. Geoinf. 10, 388-397 (2008). crossref(new window)

29.
T. Thongkanluang, N. Chirakanphaisarn, and P. Limsuwan, Preparation of NIR reflective brown pigment, Procedia Eng., 32, 895-901 (2012). crossref(new window)