Advanced SearchSearch Tips
Preparation of Valuable Compounds Encapsulated Polymer Nanoparticles with High Payload Using Core-crosslinked Amphiphilic Polymer Nanoparticles
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Applied Chemistry for Engineering
  • Volume 27, Issue 1,  2016, pp.26-34
  • Publisher : The Korean Society of Industrial and Engineering Chemistry
  • DOI : 10.14478/ace.2015.1094
 Title & Authors
Preparation of Valuable Compounds Encapsulated Polymer Nanoparticles with High Payload Using Core-crosslinked Amphiphilic Polymer Nanoparticles
Kim, Nahae; Kim, Juyoung;
  PDF(new window)
In this study, core-crosslinked amphiphilic polymer (CCAP) nanoparticles prepared using a reactive amphiphilic polymer precursor (RARP) were used for preparing some valuable compounds encapsulated polymer nanoparticles with high payload through nanoprecipitation process. Various solvents (acetone, ethanol, and THF) having different polarity and CCAP nanoparticles prepared using different amphiphilicity were used for the preparation of -tocopherol encapsulated polymer nanoparticles to investigate their effects on the encapsulation efficiency, payload, nanoparticle size, and stability. CCAP dissolved in hydrophobic solvent, THF, could form -tocopherol encapsulated polymer nanoparticles dispersed in water with the high payload of -tocopherol and encapsulation efficiency. Because of their physically and chemically robust nano-structure originated from crosslinking of the hydrophobic core, CCAP nanoparticles could encapsulate -tocopherol with the high payload (33 wt%) and encapsulation efficiency (97%), and form 70 nm-sized stable nanoparticles in water.
amphiphilic polymer;nanoparticles;-tocopherol;nano-encapsulation;nanoprecipitation;
 Cited by
C. P. Reis, R. J. Neufeld, A. J. Ribeiro, and F. Veiga, Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles, Nanomedicine: Nanotechnology, Biology and Medicine, 2, 8-21 (2006).

L. N. Bell, Stability testing of nutraceuticals and functional foods, In: Handbook of nutraceuticls and functional foods, Wildman REC (ed), CRC Press, New York, 501 (2001).

R. C. Metha, B. C. Thanoo, and P. P. Deluca, Peptide containing microspheres from low molecular weight and hydrophilic poly(d,l-lactide-co-glycolide), J. Controlled. Release, 41, 249-257 (1996). crossref(new window)

R. Brigelius-Flohe and M. G. Traber, Vitamin E: function and metabolism, FASEB Journal, 13, 1145-1155 (1999). crossref(new window)

S. H. Yoo, Y. B. Song, P. S. Chang, and H. G. Lee, Microencapsulation of $\alpha$-tocopherol using sodium alginate and its controlled release properties, Int. J. Biol. Macromol., 38, 25-30 (2006). crossref(new window)

K. A. Jhonson, Preparation of peptide and protein powders for inhalation, Adv. Drug Deliv. Rev., 26, 3-15 (1997). crossref(new window)

S. J. Park, Y. J. Yang, J. R. Lee, and H. B. Lee, Preparation and Characterization of Biodegradable Poly($\varepsilon$-caprolactone) Microcapsules Containing Erythromycin by Emulsion Solvent Evaporation Technique, Polymer(Korea), 26, 326-334 (2002).

B. O'Donnell and J. W. McGinity, Preparation of microspheres by the solvent evaporation technique, Drug Deliv. Rev., 28, 25-42 (1997). crossref(new window)

S. Takada, Y. Yamagata, M. Misaki, K. Taira, and T. Kurokawa, Sustained release of human growth hormone from microcapsules prepared by a solvent evaporation technique, J. Controlled Release, 88, 229-242 (2003). crossref(new window)

U. Bilati, E. Allemann, and E. Doelker, Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles, Eur. J. Pharm. Sci., 24, 67-75 (2005). crossref(new window)

D. Q. Guerrero, E. Allemann, H. Fessi, and E. Doelker, Preparation techniques and mechanisms of formation of biodegradable nanoparticles from performed polymers, Drug Dev. Ind. Pharm., 24, 1113-1128 (1998). crossref(new window)

H. S. Yoo, H. K. Choi, and T. G. Park, Protein-fatty acid complex for enhanced loading and stability within biodegradable nanoparticles, J. Pharm. Sci., 90, 194-201 (2001). crossref(new window)

U. Edlund and A.-C. Albertsson, Degradable polymer microspheres for controlled drug delivery, Albertsson, A.-C.(Ed), 157, 67, Degradable Alphatic polyesters, Advances in Polymer Science, Springer-Verlag, Berlin (2002).

N. B. Viswanathan, S. S. Patil, J. K. Pandit, A. K. Lele, M. G. Kulkarni, and R. A. J. Mashelkar, Morphological changes is degrading PLGA and PLA microspheres: implications for the design of controlled release system, J. Microencapsul., 18, 783-800 (2001). crossref(new window)

J. S. Chawla and M. M. Amiji, Int., Biodegradable poly($\varepsilon$ -caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen, J. Pharm., 249, 127-138 (2002).

C. R. Miller, R. Vogel, P. P. T. Surawski, S. R. Corrie, A. Ruhmann, and M. Trau, Biomolecular screening with novel organosilica microspheres, Chem. Commun., 14, 4783-4785 (2005).

Y. Yang, C. Hua, and C. M. Dong, Synthesis, Self-Assembly, and In Vitro Doxorubicin Release Behavior of Dendron-like/Linear/ Dendron-like Poly($\varepsilon$-caprolactone)-b-Poly(ethylene glycol)-b-Poly ($\varepsilon$-caprolactone) Triblock Copolymers, Biomacromolecules, 10, 2310-2318 (2009). crossref(new window)

E. Chiellini, E. E. Chiellini, F. Chiellini, and R. Solaro, Targeted Administration of Proteic Drugs. I. Preparation of Polymeric Nanoparticles, J. Bioact. Compat. Polym., 16, 441-465 (2001). crossref(new window)

A. Rosler, G. W. M. Vandermeulen, and H. A. Klok, Advanced drug delivery devices via self-assembly of amphiphilic block copolymers, Adv. Drug Delivery Rev., 53, 95-108 (2001). crossref(new window)

K. Letchford and H. Burt, Eur., A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes, J. Pharm. Biopharm., 65(3), 259-269 (2007). crossref(new window)

F. Quaglia, L. Ostacolo, G. De Rosa, M. I. La Rotonda, M. Ammendola, G. Nese, G. Maglio, R. Palumbo, and C. Vauthier, Nanoscopic core-shell drug carriers made of amphiphilic triblock and star-diblock copolymers, Int. J. Pharm., 324(1), 56-66 (2006). crossref(new window)

G. A. Husseini and W. G. Pitt, Micelles and nanoparticles for ultrasonic drug and gene delivery, Adv. Drug Delivery Rev., 60, 1137-1152 (2008). crossref(new window)

J. X. Zhang, K. Ellsworth, and P. X. Ma, Hydrophobic pharmaceuticals mediated self-assembly of $\beta$-cyclodextrin containing hydrophilic copolymers: Novel chemical responsive nano-vehicles for drug delivery, J. Controlled Release, 145, 116-123 (2010). crossref(new window)

P. J. Gandhi and Z. V. P. Murthy, Solubility and Crystal Size of Sirolimus in Different Organic Solvents, J. Chem. Eng. Data, 55, 5050-5054 (2010). crossref(new window)

L. Philippe, L. Sylviane, B. Amelie, G. Ruxandra, R. Wouter, B. Gillian, and V. Christine, Influence of polymer behaviour in organic solution on the production of polylactide nanoparticles by nanoprecipitation, Int. J. Pharm., 344, 33-43 (2007). crossref(new window)

J. Y. Kim, D. H. Shin, K. J. Ihn, and C. W. Nam, Synthesis of Magnetic Nanocomposite Based on Amphiphilic Polyurethane Network Films, Macromol. Chem. Phys., 203, 2454-2462 (2002). crossref(new window)

J. Y. Kim, D. H. Shin, and K. J. Ihn, Synthesis of Poly(urethane acrylate-co-styrene) Films Containing Silver Nanoparticles by a Simultaneous Copolymerization/in situ Electron Transfer Reaction, Macromol. Chem. Phy., 206, 794-801 (2005). crossref(new window)

J. Y. Kim, H. M. Kim, D. H. Shin, and K. J. Ihn, Synthesis of CdS Nanoparticles Dispersed Within Poly(urethane acrylate-costyrene) Films Using an Amphiphilic Urethane Acrylate Nonionomer, Macromol. Chem. Phys., 207, 925-932 (2006). crossref(new window)

J. Maia and M. Santana, The effect of some processing conditions on the characteristics of biodegradable microspheres obtained by an emulsion solvent evaporation process, Brazilian J. Chem. Eng., 21, 1-12 (2004). crossref(new window)

J. Y. Kim, J. Wainaina, J. H. Kim, and J. K. Shim, Use of Polymer Nanoparticles as Functional Nano-Absorbents for Low- Molecular Weight Hydrophobic Pollutants, J. Nanosci. Nanotechnol., 7, 4000-4004 (2007). crossref(new window)

J. Y. Kim, J. Wainaina, and J. S. Na, Synthesis of amphiphilic silica/ polymer composite nanoparticles as water-dispersible nano-absorbent for hydrophobic pollutants, J. Ind. Eng. Chem., 17, 681-690 (2011). crossref(new window)

I. G. Zigoneanu, C. E. Astete, and C. M. Sabliov, Nanoparticles with entrapped $\alpha$-tocopherol: synthesis, characterization, and controlled release, Nanotech., 19, 105606-105613 (2008). crossref(new window)

T. B. Shea, D. Ortiz, R. J. Nicolosi, R. Kumar, and A. C. Watterson, Nanosphere-mediated delivery of vitamin E increases its efficacy against oxidative stress resulting from exposure to amyloid beta, J. of Alzh. Dis., 7, 297-301 (2005). crossref(new window)

Y. J. Byun, J. B. Hwang, S. H. Bang, D. Darby, K. Cooksey, P. L. Dawson, H. J. Park, and S. Whiteside, Formulation and characterization of $\alpha$-tocopherol loaded poly $\varepsilon$-caprolactone (PCL) nanoparticles, LWT-Food Sci. and Tech., 44, 24-28 (2011). crossref(new window)