Advanced SearchSearch Tips
Value-added Utilization of Lignin Residue from Pretreatment Process of Lignocellulosic Biomass
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Applied Chemistry for Engineering
  • Volume 27, Issue 2,  2016, pp.135-144
  • Publisher : The Korean Society of Industrial and Engineering Chemistry
  • DOI : 10.14478/ace.2016.1016
 Title & Authors
Value-added Utilization of Lignin Residue from Pretreatment Process of Lignocellulosic Biomass
Jung, Jae Yeong; Lee, Yumi; Lee, Eun Yeol;
  PDF(new window)
Due to the high price volatility and environmental concern of petroleum, biofuels such as bioethanol produced from lignocellulosic biomass have attracted much attention. It is also expected that the amount of lignin residue generated from pretreatment of lignocellulosic biomass will increase as the volume of cellulosic bioethanol increases. Lignin is a natural aromatic polymer and has very complex chemical structures with chemical functional groups. Chemical modification of lignin such as oxypropylation and epoxidation has also been applied to the production of value-added bioplastics such as polyurethane and polyester with enhanced thermal and mechanical properties. In addition, lignin can be used for carbon fiber production in automobile industries. This review highlights recent progresses in utilizations and chemical modifications of lignin for the production of bioplastics, resins, and carbon fiber.
lignin;lignocellulosic biomass;bioplastics;chemical modification;carbon fiber;
 Cited by
H. J. Eom, Y. K. Hong, S. H. Chung, Y. M. Park, and K. Y. Lee, Depolymerization of Kraft Lignin at Water-Phenol Mixture Solvent in Near Critical Region, J. Energy Eng., 20, 36-43 (2011). crossref(new window)

J. A. Melero, J. Iglesias, and A. Garcia, Biomass as renewable feedstock in standard refinery units. Feasibility, opportunities and challenges, Energy Environ. Sci., 5, 7393-7420 (2012). crossref(new window)

J. Y. Zhu and X. J. Pan, Woody biomass pretreatment for cellulosic ethanol production: technology and energy consumption evaluation, Bioresour. Technol., 101, 4992-5002 (2010). crossref(new window)

M. Ballesteros, J. M. Oliva, M. J. Negro, P. Manzanares, and I. Ballesteros, Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromycesmarxianus CECT 10875, Process Biochem., 39, 1843-1848 (2004). crossref(new window)

Z. P. Lei, Z. Q. Hu, H. F. Shui, S. B. Ren, Z. C. Wang, S. G. Kang, and C. X. Pan, Pyrolysis of lignin following ionic liquid pretreatment at low temperature, Fuel Process. Technol., 138, 612-615 (2015). crossref(new window)

S. Kubo and J. F. Kadla, Lignin-based carbon fibers: Effect of synthetic polymer blending on fiber properties, J. Polym. Environ., 13, 97-105 (2005). crossref(new window)

M. Kleinert and T. Barth, Phenols from lignin, Chem. Eng. Technol., 31, 736-745 (2008). crossref(new window)

X. Luo, A. Mohanty, and M. Misra, Lignin as a reactive reinforcing filler for water-blown rigid biofoam composites from soy oil-based polyurethane, Ind. Crop. Prod., 47, 13-19 (2013). crossref(new window)

S. Sen, S. Patil, and D. S. Argyropoulos, Thermal properties of lignin in copolymers, blends, and composites: a review, Green Chem., 17, 4862-4887 (2015). crossref(new window)

E. Dorrestijn, L. J. Laarhoven, I. W. Arends, and P. Mulder, The occurrence and reactivity of phenoxyl linkages in lignin and low rank coal, J. Anal. Appl. Pyrolysis, 54, 153-192 (2000). crossref(new window)

A. K. Sangha, J. M. Parks, R. F. Standaert, A. Ziebell, M. Davis, and J. C. Smith, Radical coupling reactions in lignin synthesis: a density functional theory study, J. Phys. Chem. B, 116, 4760-4768 (2012).

F. S. Chakar and A. J. Ragauskas, Review of current and future softwood kraft lignin process chemistry, Ind. Crop. Prod., 20, 131-141 (2004). crossref(new window)

P. Azadi, O. R. Inderwildi, R. Farnood, and D. A. King, Liquid fuels, hydrogen and chemicals from lignin: a critical review, Renew. Sust. Energ. Rev., 21, 506-523 (2013). crossref(new window)

S. Laurichesse and L. Averous, Chemical modification of lignins: towards biobased polymers, Prog. Polym. Sci., 39, 1266-1290 (2014). crossref(new window)

A. Lee and Y. Deng, Green polyurethane from lignin and soybean oil through non-isocyanate reactions Eur. Polym. J., 63, 67-73 (2015). crossref(new window)

Y. Park, W. O. Doherty, and P. J. Halley, Developing lignin-based resin coatings and composites, Ind. Crop. Prod., 27, 163-167 (2008). crossref(new window)

B. Zhao, G. Chen, Y. Liu, K. Hu, and R. Wu, Synthesis of lignin base epoxy resin and its characterization, J. Mater. Sci. Lett., 20, 859-862 (2001). crossref(new window)

Y. J. Jo, S. H. Choi, and E. Y. Lee, Production of Biopolyols, Bioisocyanates and Biopolyurethanes from Renewable Biomass, Appl. Chem. Eng., 24, 579-586 (2013). crossref(new window)

H. Hatakeyema, N. Tanamachi, H. Matsumura, S. Hirose, and T. Hatakeyama, Bio-based polyurethane composite foams with inorganic fillers studied by thermogravimetry, Thermochim. Acta, 431, 155-160 (2005). crossref(new window)

R. Auvergne, S. Caillol, G. David, B. Boutevin, and J. P. Pascault, Biobased thermosetting epoxy: present and future, Chem. Rev., 114, 1082-1115 (2013).

L. Pilato, Phenolic resins: 100Years and still going strong, React. Funct. Polym., 73, 270-277 (2013). crossref(new window)

K. H. Kim, Y. J. Jo, C. G. Lee, and E. Y. Lee, Solvothermal liquefaction of microalgalTetraselmis sp. biomass to prepare biopolyols by using PEG# 400-blended glycerol, Algal Res., 12, 539-544 (2015). crossref(new window)

K. Nakamura, T. Hatakeyama, and H. Hatakeyama, Thermal properties of solvolysis lignin-derived polyurethanes, Polym. Adv. Technol., 3, 151-155 (1992). crossref(new window)

S. Hu, C. Wan, and Y. Li, Production and characterization of biopolyols and polyurethane foams from crude glycerol based liquefaction of soybean straw, Bioresour. Technol., 103, 227-233 (2012). crossref(new window)

Y. Li and A. J. Ragauskas, Kraft lignin-based rigid polyurethane foam, J. Wood Chem. Technol., 32, 210-224 (2012). crossref(new window)

N. Mahmood, Z. Yuan, J. Schmidt, and C. C. Xu, Production of polyols via direct hydrolysis of kraft lignin: Effect of process parameters, Bioresour. Technol., 139, 13-20 (2013). crossref(new window)

S. Hu, X. Luo, and Y. Li, Polyols and polyurethanes from the liquefaction of lignocellulosic biomass, Chem. Sus. Chem., 7, 66-72 (2014). crossref(new window)

E. B. da Silva, M. Zabkova, J. D. Araujo, C. A. Cateto, M. F. Barreiro, M. N. Belgacem, and A. E. Rodrigues, An integrated process to produce vanillin and lignin-based polyurethanes from Kraft lignin, Chem. Eng. Res. Des., 87, 1276-1292 (2009). crossref(new window)

Y. Jin, X. Ruan, X. Cheng, and Q. Lu, Liquefaction of lignin by polyethyleneglycol and glycerol, Bioresour. Technol., 102, 3581-3583 (2011). crossref(new window)

H. Q. Li, Q. Shao, H. Luo, and J. Xu, Polyurethane foams from alkaline lignin-based polyether polyol, J. Appl. Polym. Sci., Doi:10.1002/app.43261. crossref(new window)

J. H. Lee, J. H. Lee, D. K. Kim, C. H. Park, J. H. Yu, and E. Y. Lee, Crude glycerol-mediated liquefaction of empty fruit bunches saccharification residues for preparation of biopolyurethane, J. Ind. Eng. Chem., 34, 157-164 (2016). crossref(new window)

J. C. Dominguez, M. Oliet, M. V. Alonso, E. Rojo, and F. Rodriguez, Structural, thermal and rheological behavior of a bio-based phenolic resin in relation to a commercial resol resin, Ind. Crop. Prod., 42, 308-314 (2013). crossref(new window)

J. M. Perez, M. Oliet, M. V. Alonso, and F. Rodriguez, Cure kinetics of lignin-novolac resins studied by isoconversional methods, Thermochim. Acta, 487, 39-42 (2009). crossref(new window)

S. Cheng, Z. Yuan, M. Leitch, M. Anderson, and C. C. Xu, Highly efficient de-polymerization of organosolv lignin using a catalytic hydrothermal process and production of phenolic resins/adhesives with the depolymerized lignin as a substitute for phenol at a high substitution ratio, Ind. Crop. Prod., 44, 315-322 (2013). crossref(new window)

N. S. Cetin and N. Ozmen, Use of organosolv lignin in phenol-formaldehyde resins for particleboard production: I. Organosolv lignin modified resins, Int. J. Adhes. Adhes., 22, 477-480 (2002). crossref(new window)

M. V. Alonso, M. Oliet, J. M. Perez, F. Rodriguez, and J. Echeverria, Determination of curing kinetic parameters of lignin-phenol-formaldehyde resol resins by several dynamic differential scanning calorimetry methods, Thermochim. Acta, 419, 161-167 (2004). crossref(new window)

C. C. Lin and H. Teng, Influence of the formaldehyde-to-phenol ratio in resin synthesis on the production of activated carbons from phenol-formaldehyde resins, Ind. Eng. Chem. Res., 41, 1986-1992 (2002). crossref(new window)

P. K. Pal, A. Kumar, and S. K. Gupta, Modelling of resole type phenol formaldehyde polymerization, Polymer, 22, 1699-1704 (1981). crossref(new window)

W. J. Lee, K. C. Chang, and I. M. Tseng, Properties of phenol formaldehyde resins prepared from phenol-liquefied lignin, J. Appl. Polym. Sci., 124, 4782-4788 (2012).

W. Zhang, Y. Ma, Y. Xu, C. Wang, and F. Chu, Lignocellulosic ethanol residue-based lignin-phenol-formaldehyde resin adhesive, Int. J. Adhes. Adhes., 40, 11-18 (2013). crossref(new window)

W. J. Lee and Y. C. Chen, Novolak PF resins prepared from phenol liquefied Cryptomeria japonica and used in manufacturing moldings, Bioresour. Technol., 99, 7247-7254 (2008). crossref(new window)

J. M. Raquez, M. Deleglise, M. F. Lacrampe, and P. Krawczak, Thermosetting (bio) materials derived from renewable resources: a critical review, Prog. Polym. Sci., 35, 487-509 (2010). crossref(new window)

B. J. Anderson, Thermal stability of high temperature epoxy adhesives by thermogravimetric and adhesive strength measurements, Polym. Degrad. Stabil., 96, 1874-1881 (2011). crossref(new window)

M. R. Bagherzadeh, A. Daneshvar, and H. Shariatpanahi, Novel water-based nanosiloxane epoxy coating for corrosion protection of carbon steel, Surf. Coat. Technol., 206, 2057-2063 (2012). crossref(new window)

T. I. Yang, C. W. Peng, Y. L. Lin, C. J. Weng, G. Edgington, A. Mylonakis, T. C. Huang, C. H. Hsu, J. M. Yeh, and Y. Wei, Synergistic effect of electroactivity and hydrophobicity on the anticorrosion property of room-temperature-cured epoxy coatings with multiscale structures mimicking the surface of Xanthosomasagittifolium leaf, J. Mater. Chem., 22, 15845-15852 (2012). crossref(new window)

K. Li, K. Wang, M. S. Zhan, and W. Xu, The change of thermal-mechanical properties and chemical structure of ambient cured DGEBA/TEPA under accelerated thermo-oxidative aging, Polym. Degrad. Stabil., 98, 2340-2346 (2013). crossref(new window)

R. F. Fischer, Polyesters from epoxides and anhydrides, J. Polym. Sci., 44, 155-172 (1960). crossref(new window)

L. H. Sinh, N. N. Trung, B. T. Son, S. Shin, D. T. Thanh, and J. Y. Bae, Curing behavior, thermal, and mechanical properties of epoxy resins cured with a novel liquid crystalline dicarboxylic acid curing agent, Polym. Eng. Sci., 54, 695-703 (2014). crossref(new window)

E. C. Dodds and W. Lawson, Synthetic estrogenic agents without the phenanthrene nucleus, Nature, 137, 996-996 (1936).

K. L. Howdeshell, A. K. Hotchkiss, K. A. Thayer, J. G. Vandenbergh, and F. S. VomSaal, Environmental toxins: exposure to bisphenolA advances puberty, Nature, 401, 763-764 (1999). crossref(new window)

A. Campanella, M. A. Baltanas, M. C. Capel-Sanchez, J. M. Campos-Martin, and J. L. G. Fierro, Soybean oil epoxidation with hydrogen peroxide using an amorphous Ti/SiO 2 catalyst, Green Chem., 6, 330-334 (2004). crossref(new window)

T. Koike, Progress in development of epoxy resin systems based on wood biomass in Japan, Polym. Eng. Sci., 52, 701-717 (2012). crossref(new window)

N. E. El Mansouri, Q. Yuan, and F. Huang, Synthesis and characterization of kraft lignin-based epoxy resins, Bioresources, 6, 2492-2503 (2011).

T. Malutan, R. Nicu, and V. I. Popa, Lignin modification by epoxidation, Bioresources, 3, 1371-1376 (2008).

P. Y. Kuo, M. Sain, and N. Yan, Synthesis and characterization of an extractive-based bio-epoxy resin from beetle infested Pinus contorta bark, Green Chem., 16, 3483-3493 (2014). crossref(new window)

H. Pan, G. Sun, and T. Zhao, Synthesis and characterization of aminated lignin, Int. J. Biol. Macromol., 59, 221-226 (2013). crossref(new window)

C. Sasaki, M. Wanaka, H. Takagi, S. Tamura, C. Asada, and Y. Nakamura, Evaluation of epoxy resins synthesized from steam-exploded bamboo lignin, Ind. Crop. Prod., 43, 757-761 (2013). crossref(new window)

F. Ferdosian, Z. Yuan, M. Anderson, and C. C. Xu, Synthesis of lignin-based epoxy resins: optimization of reaction parameters using response surface methodology, RSC Adv., 4, 31745-31753 (2014). crossref(new window)

F. Ferdosian, Z. Yuan, M. Anderson, and C. C. Xu, Sustainable lignin-based epoxy resins cured with aromatic and aliphatic amine curing agents: Curing kinetics and thermal properties, Thermochim. Acta, 618, 48-55 (2015). crossref(new window)

J. Qin, M. Woloctt, and J. Zhang, Use of polycarboxylic acid derived from partially depolymerized lignin as a curing agent for epoxy application, ACS Sustain. Chem. Eng., 2, 188-193 (2013).

T. Saito, R. H. Brown, M. A. Hunt, D. L. Pickel, J. M. Pickel, J. M. Messman, F. S. Baker, M. Keller, and A. K. Naskar, Turning renewable resources into value-added polymer: development of lignin-based thermoplastic, Green Chem., 14, 3295-3303 (2012). crossref(new window)

A. L. Korich, K. M. Clarke, D. Wallace, and P. M. Iovine, Chemical modification of a lignin model polymer via arylboronate ester formation under mild reaction conditions, Macromolecules, 42, 5906-5908 (2009). crossref(new window)

J. H. Lora and W. G. Glasser, Recent industrial applications of lignin: a sustainable alternative to nonrenewable materials, J. Polym. Environ., 10, 39-48 (2002). crossref(new window)

M. Evtiouguina, A. Barros-Timmons, J. J. Cruz-Pinto, C. P. Neto, M. N. Belgacem, and A. Gandini, Oxypropylation of cork and the use of the ensuing polyols in polyurethane formulations, Biomacromolecules, 3, 57-62 (2002). crossref(new window)

B. Ahvazi, O. Wojciechowicz, T. M. Ton-That, and J. Hawari, Preparation of lignopolyols from wheat straw soda lignin, J. Agric. Food Chem., 59, 10505-10516 (2011). crossref(new window)

C. A. Cateto, M. F. Barreiro, A. E. Rodrigues, and M. N. Belgacem, Optimization study of lignin oxypropylation in view of the preparation of polyurethane rigid foams, Ind. Eng. Chem. Res., 48, 2583-2589 (2009). crossref(new window)

H. Nadji, C. Bruzzese, M. N. Belgacem, A. Benaboura, and A. Gandini, Oxypropylation of lignins and preparation of rigid polyurethane foams from the ensuing polyols, Macromol. Mater. Eng., 290, 1009-1016 (2005). crossref(new window)

H. Sadeghifar, C. Cui, and D. S. Argyropoulos, Toward thermoplastic lignin polymers. Part 1. Selective masking of phenolic hydroxyl groups in kraftlignins via methylation and oxypropylation chemistries, Ind. Eng. Chem. Res., 51, 16713-16720 (2012). crossref(new window)

M. Yoshioka, Y. Nishio, D. Saito, H. Ohashi, M. Hashimoto, and N. Shiraishi, Synthesis of biopolyols by mild oxypropylation of liquefied starch and its application to polyurethane rigid foams, J. Appl. Polym. Sci., 130, 622-630 (2013). crossref(new window)

M. V. Alonso, M. Oliet, F. Rodriguez, J. Garcia, M. A. Gilarranz, and J. J. Rodriguez, Modification of ammonium lignosulfonate by phenolation for use in phenolic resins, Bioresour. Technol., 96, 1013-1018 (2005). crossref(new window)

L. Hu, H. Pan, Y. Zhou, and M. Zhang, Methods to improve lignin's reactivity as a phenol substitute and as replacement for other phenolic compounds: A brief review, BioResources, 6, 3515-3525 (2011).

J. Podschun, B. Saake, and R. Lehnen, Reactivity enhancement of organosolv lignin by phenolation for improved bio-based thermosets, Eur. Polym. J., 67, 1-11 (2015).

R. Fang, X. Cheng, and W. S. Lin, Preparation and application of dimer acid/lignin graft copolymer, BioResources, 6, 2874-2884 (2011).

J. Qiao, M. Guo, L. Wang, D. Liu, X. Zhang, L. Yu, W. Song and Y. Liu, Recent advances in polyolefin technology, Polym. Chem., 2, 1611-1623 (2011). crossref(new window)

H. Chung and N. R. Washburn, Chemistry of lignin-based materials, Green Mat., 1, 137-160 (2012).

M. Mikulasova, B. Kosikova, P. Alexy, F. Kacik, and E. Urgelova, Effect of blending lignin biopolymer on the biodegradability of polyolefin plastics, World J. Microbiol. Biotechnol., 17, 601-607 (2001). crossref(new window)

G. Cazacu, M. C. Pascu, L. Profire, A. I. Kowarski, M. Mihaes, and C. Vasile, Lignin role in a complex polyolefin blend, Ind. Crop. Prod., 20, 261-273 (2004). crossref(new window)

M. Nahmany and A. Melman, Chemoselectivity in reactions of esterification, Org. Biomol. Chem., 2, 1563-1572 (2004). crossref(new window)

G. Sivasankarapillai, A. G. McDonald, and H. Li, Lignin valorization by forming toughened lignin-co-polymers: Development of hyperbranchedprepolymers for cross-linking, Biomass Bioenerg., 47, 99-108 (2012). crossref(new window)

T. Saito, R. H. Brown, M. A. Hunt, D. L. Pickel, J. M. Pickel, J. M. Messman, F. S. Baker, M. Keller, and A. K. Naskar, Turning renewable resources into value-added polymer: development of lignin-based thermoplastic, Green Chem., 14, 3295-3303 (2012). crossref(new window)

Z. X. Guo and A. Gandini, Polyesters from lignin-2. The copolyesterification of kraft lignin and polyethylene glycols with dicarboxylic acid chlorides, Eur. Polym. J., 27, 1177-1180 (1991). crossref(new window)

N. T. ThanhBinh, N. D. Luong, D. O. Kim, S. H. Lee, B. J. Kim, Y. S. Lee, and J. D. Nam, Synthesis of lignin-based thermoplastic copolyester using kraft lignin as a macromonomer, Compos. Interfaces, 16, 923-935 (2009). crossref(new window)

E. Frank, L. M. Steudle, D. Ingildeev, J. M. Sporl, and M. R. Buchmeiser, Carbon fibers: precursor systems, processing, structure, and properties, Angew. Chem. Int. Ed., 53, 5262-5298 (2014). crossref(new window)

I. Norberg, Y. Nordstrom, R. Drougge, G. Gellerstedt, and E. Sjoholm, A new method for stabilizing softwood kraft lignin fibers for carbon fiber production, J. Appl. Polym. Sci., 128, 3824-3830 (2013). crossref(new window)

J. F. Kadla, S. Kubo, R. A. Venditti, R. D. Gilbert, A. L. Compere, and W. Griffith, Lignin-based carbon fibers for composite fiber applications, Carbon, 40, 2913-2920 (2002). crossref(new window)

D. A. Baker and T. G. Rials, Recent advances in low-cost carbon fiber manufacture from lignin, J. Appl. Polym. Sci., 130, 713-728 (2013). crossref(new window)

G. Gellerstedt, E. Sjoholm, and I. Brodin, The wood-based biorefinery: A source of carbon fiber?, Open Agric. J., 4, 119-124 (2010). crossref(new window)