JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Improvement in Sensitivity of Electrochemical Glucose Biosensor Based on CuO/Au@MWCNTs Nanocomposites
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Applied Chemistry for Engineering
  • Volume 27, Issue 2,  2016, pp.145-152
  • Publisher : The Korean Society of Industrial and Engineering Chemistry
  • DOI : 10.14478/ace.2015.1117
 Title & Authors
Improvement in Sensitivity of Electrochemical Glucose Biosensor Based on CuO/Au@MWCNTs Nanocomposites
Park, Mi-Seon; Bae, Tae-Sung; Lee, Young-Seak;
  PDF(new window)
 Abstract
In this study, CuO was introduced on MWCNTs dispersed with Au nanoparticles to improve the glucose sensing capability of electrochemical biosensors. Nano-cluster shaped CuO was synthesized due to the presence of Au nanoparticle, which affects glucose sensing performance. The biosensor featuring CuO/Au@MWCNTs nanocomposite as an electrode material when 0.1 mole of CuO was synthesized showed the highest sensitivity of , which is 4 times better than that of MWCNTs based biosensors. In addition, it shows a wider linear range from 0 to 10 mM and lower limit of detection (LOD) of 0.008 mM. These results demonstrate that CuO/Au@MWCNTs nanocomposite sensors are superior to other CuO based biosensors which are attributed that the nano-cluster shaped CuO is favorable for the electrochemical reaction with glucose molecules.
 Keywords
electrochemical glucose biosensor;non-enzymatic system;nanocomposite;copper oxide;multi-walled carbon nanotube;
 Language
Korean
 Cited by
 References
1.
X. Jiang, Y. Wu, X. Mao, X. Cui, and L. Zhu, Amperometric glucose biosensor based on integration of glucose oxidase with platinum nanoparticles/ordered mesoporous carbon nanocomposite, Sens. Actuators B, 153, 158-163 (2011). crossref(new window)

2.
S. K. Vashist, D. Zheng, K. A. Rubeaan, J. H. T. Luong, and F. S. Sheu, Technology behind commercial devices for blood glucose monitoring in diabetes management: A review, Anal. Chim. Acta, 703, 124-136 (2011). crossref(new window)

3.
W. Zhang, D. Ma, and J. Du, Prussian blue nanoparticles as peroxidase mimetics for sensitive colorimetric detection of hydrogen peroxide and glucose, Talanta, 120, 362-367 (2014). crossref(new window)

4.
C. Wang and H. Huang, Flow injection analysis of glucose based on its inhibition of electrochemiluminescence in a Ru(bpy)32+-tripropylamine system, Anal. Chim. Acta, 498, 61-68 (2003). crossref(new window)

5.
X. Tian, S. Lian, L. Zhao, X. Chen, Z. Huang, and X. Chen, A novel electrochemiluminescence glucose biosensor based on platinum nanoflowers/graphene oxide/glucose oxidase modified glassy carbon electrode, J. Solid State Electrochem., 18, 2375-2382 (2014). crossref(new window)

6.
X. Lv, X. Wang, D. Huang, C. Niu, and G. Zeng, Q. Niu, Quantum dots and p-phenylenediamine based method for the sensitive determination of glucose, Talanta, 129, 20-25, (2014). crossref(new window)

7.
S. Park, H. Boo, and T. D. Chung, Electrochemical non-enzymatic glucose sensors, Anal. Chim. Acta, 556, 46-57 (2006). crossref(new window)

8.
Y. -W. Hsu, T. -K. Hsu, C. -L. Sun, Y. -T. Nien, N. -W. Pu, and M. -D. Ger, Synthesis of CuO/graphene nanocomposites for nonenzymatic electrochemical glucose biosensor applications, Electrochim. Acta, 82, 152-157 (2012). crossref(new window)

9.
R. K. Shervedani, A. H. Mehrjardi, and N. Zamiri, A novel method for glucose determination based on electrochemical impedance spectroscopy using glucose oxidase self-assembled biosensor, Bioelectrochemistry, 69, 201-208 (2006). crossref(new window)

10.
L. Wang, X. Gao, L. Jin, Q. Wu, Z. Chen, and X. Lin, Amperometric glucose biosensor based on silver nanowires and glucose oxidase, Sens. Actuators B, 176, 9-14 (2013). crossref(new window)

11.
F. Kong, S. Gu, W. Li, T. Chen, Q. Xu, and W. Wang, A paper disk equipped with graphene/polyaniline/Au nanoparticles/glucose oxidase biocomposite modified screen-printed electrode: Toward whole blood glucose determination, Biosens. Bioelectron., 56, 77-82 (2014). crossref(new window)

12.
K. -C. Lin, Y. -C. Lin, and S. -M. Chen, A highly sensitive nonenzymatic glucose sensor based on multi-walled carbon nanotubes decorated with nickel and copper nanoparticles, Electrochim. Acta, 96, 164-172 (2013). crossref(new window)

13.
L. Luo, L. Zhu, and Z. Wang, Nonenzymatic amperometric determination of glucose by CuO nanocubes-graphene nanocomposite modified electrode, Bioelectrochemistry, 88, 156-163 (2012). crossref(new window)

14.
Z. J. Zhuang, X. D. Su, H. Y. Yuan, Q. Sun, D. Xiao, and M. M. F. Choi, An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode, Analyst, 133, 126-232 (2008). crossref(new window)

15.
S. A. Kumar, H. W. Cheng, S. M. Chen, and S. F. Wang, Preparation and characterization of copper nanoparticles/zinc oxide composite modified electrode and its application to glucose sensing, Mater. Sci. Eng. C, 30, 86-91 (2010). crossref(new window)

16.
C. X. Wang, L. W. Yin, L. Y. Zhang, and R. Gao, Ti/$TiO_2$ Nanotube Array/Ni Composite Electrodes for Nonenzymatic Amperometric Glucose Sensing, J. Phys. Chem. C, 114, 4408-4413 (2010). crossref(new window)

17.
X. G. Zheng, C. N. Xu, Y. Tomokiyo, E. Tanaka, H. Yamada, and Y. Soejima, Observation of Charge Stripes in Cupric Oxide, Phys. Rev. Lett., 85, 5170-5173 (2000). crossref(new window)

18.
J. Chen, S. Z. Deng, N. S. Xu, W. X. Zhang, X. G. Wen, and S. H. Yang, Temperature dependence of field emission from cupric oxide nanobelt films, Appl. Phys. Lett., 83, 746-748 (2003). crossref(new window)

19.
A. Chowdhuri, V. Gupta, K. Sreenivas, R. Kumar, S. Mozumdar, and P. K. Patanjali, Response speed of $SnO_2$-based $H_2S$ gas sensors with CuO nanoparticles, Appl. Phys. Lett., 84, 1180-1182 (2004). crossref(new window)

20.
T. You, O. Niwa, M. Tomita, H. Ando, M. Suzuki, and S. Hirono, Characterization and electrochemical properties of highly dispersed copper oxide/hydroxide nanoparticles in graphite-like carbon films prepared by RF sputtering method, Electrochem. Commun., 4, 468-471 (2002). crossref(new window)

21.
Y. S. Lee and K. H. Yoon, Characterization and influence of shear flow on the surface resistivity and mixing condition on the dispersion quality of multi-walled carbon nanotube/polycarbonate nanocomposites, Carbon Lett., 16, 86-92 (2015). crossref(new window)

22.
M. Y. Koo, H. C. Shin, W. -S. Kim, and G. W. Lee, Properties of multi-walled carbon nanotube reinforced epoxy composites fabricated by using sonication and shear mixing, Carbon Lett., 15, 255-261 (2014). crossref(new window)

23.
T. Saito, K. Matsushige, and K. Tanake, Chemical treatment and modification of multi-walled carbon nanotubes, Physica B, 323, 280-283 (2002). crossref(new window)

24.
K. L. Chopra, Thin Film Phenomena, Wiley, New York (1969).

25.
J. S. Im, J. G. Kim, T. -S. Bae, H. -R. Yu, and Y. -S. Lee, Surface modification of electrospun spherical activated carbon for a high-performance biosensor electrode, Sens. Actuators B, 158, 151-158 (2011). crossref(new window)

26.
J. Wang and W. D. Zhang, Fabrication of CuO nanoplatelets for highly sensitive enzyme-free determination of glucose, Electrochim. Acta, 56, 7510-7516 (2011). crossref(new window)

27.
H. Wei, J. J. Sun, L. Guo, X. Li, and G. N. Chen, Highly enhanced electrocatalytic oxidation of glucose and shikimic acid at a disposable electrically heated oxide covered copper electrode, Chem. Commun., 15, 2842-2844 (2009).

28.
J. M. Marioli and T. Kuwana, Electrochemical characterization of carbohydrate oxidation at copper electrodes, Electrochim. Acta., 37, 1187-1197 (1992). crossref(new window)

29.
J. S. Im, J. Yun, J. G. Kim, T. -S. Bae, and Y. -S. Lee, The effects of carbon nanotube addition and oxyfluorination on the glucose- sensing capabilities of glucose oxidase-coated carbon fiber electrodes, Appl. Surf. Sci., 258, 2219-2225 (2012). crossref(new window)

30.
M. Gougis, A. Tabet-Aoul, D. Ma, and M. Mohamedi, Laser synthesis and tailor-design of nanosized gold onto carbonnanotubes for non-enzymatic electrochemical glucose sensor, Sens. Actuators B, 193, 363-369 (2014). crossref(new window)

31.
R. R. Adzic, M. W. Hsiao, and E. B. Yeager, Electrochemical oxidation of glucose on single crystal gold surfaces, J. Electroanal. Chem. Interfacial. Electrochem., 260, 475-485 (1989). crossref(new window)

32.
J. E. Oliveira, M. L. H. Capparelli, E. S. Medeiros, and V. Zucolotto, Poly(lactic acid)/Carbon Nanotube Fibers as Novel Platforms for Glucose Biosensors, Biosensors, 2, 70-82 (2012). crossref(new window)

33.
L. C. Jiang and W. D. Zhang, A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode, Biosens. Bioelectron., 25, 1402-1407 (2010). crossref(new window)

34.
T. Kawasaki, H. Akanuma, and T. Y. Yamanouchi, Increased Fructose Concentrations in Blood and Urine in Patients With Diabetes, Diab. Care, 25, 353-357 (2002). crossref(new window)

35.
B. Vient, B. Panzini, M. Boucher, and J. Massicotte, Automated Enzymatic Assay for the Determination of Sucrose in Serum and Urine and Its Use as a Marker of Gastric Damage, Clin. Chem., 44, 2369-2371 (1998).

36.
E. Reitz, W. Z. Jia, M. Gentile, Y. Wang, and Y. Lei, CuO nanospheres based nonenzymatic glucose sensor, Electroanalysis, 20, 2482-2486 (2008). crossref(new window)

37.
S. Hajar, K. Mahdi, and A. E. Ali, Rapid nonenzymatic monitoring of glucose and fructose using a CuO/multiwalled carbon nanotube nanocomposite-modified glassy carbon electrode, Chinese J. Catal., 34, 1208-1215 (2013). crossref(new window)