Advanced SearchSearch Tips
Synthesis of Propylene Carbonate over Metal containing Ionic Liquid Catalysts
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Applied Chemistry for Engineering
  • Volume 27, Issue 2,  2016, pp.153-157
  • Publisher : The Korean Society of Industrial and Engineering Chemistry
  • DOI : 10.14478/ace.2015.1124
 Title & Authors
Synthesis of Propylene Carbonate over Metal containing Ionic Liquid Catalysts
Moon, Ye-Ji; Ji, Dahye; Kim, Dong-Woo; Kim, Hyeon-Gook; Cho, Deug-Hee;
  PDF(new window)
In this study, three different metal-containing ionic liquid catalysts were prepared by metal insertion and characterized by various physicochemical analytic methods. The catalytic performance of the metal containing ionic liquids in the cycloaddition of with propylene oxide (PO) to produce propylene carbonate (PC) was investigated under the solvent free condition. The order of approximate rate constants () for the metal containing ionic liquid catalysts was , > > . These results are in accord with the experimentally obtained activity order of the different metal containing ionic liquid catalysts.
carbon dioxide;cycloaddition;propylene carbonate;metal complex;kinetic study;
 Cited by
U. Romano, Dimethyl Carbonate and its Production Technology, Chim. Ind., 75, 303-306 (1993).

A. -A. G. Shaikh and S. Sivaram, Organic Carbonates, Chem. Rev., 96(3), 951-976 (1996). crossref(new window)

K. Weissermel and H. J. Arpe, Industral Organic Chemestry, 3rd ed., Wiley-VCH, New York (1997).

N. Kihara, N. Hara, and T. Endo, Catalytic Activity of Various Salts in the Reaction of 2,3-Epoxypropyl Phenyl Ether and CarbonDioxide under Atmospheric Pressure, J. Org. Chem., 58(23), 6198-6202 (1993). crossref(new window)

T. Yano, H. Matsui, T. Koike, H. Ishiguro, H. Rujihara, M. Yoshihara, and T. Maeshima, Magnesium Oxide-Catalyzed Reaction of Carbon Dioxide with an Epoxide with Retention of Stereochemistry, Chem. Commun., 12, 1129-1130 (1997).

K. Yamaguchi, K. T. Yoshida, H. Yoshida, and K. Kaneda, Mg-Al Mixed Oxides as Highly Active Acid-Base Catalysts for Cycloaddition of Carbon Dioxide to Epoxides, J. Am. Chem. Soc., 121(18), 4526-4527 (1999). crossref(new window)

R. L. Paddock and S. T. Nguyen, Chemical $CO_2$ Fixation: Cr(III) Salen Complexes as Highly Efficient Catalysts for the Coupling of $CO_2$ and Epoxides, J. Am. Chem. Soc., 123(46), 11498-11499 (2001). crossref(new window)

Y. M. Shen, W. L. Duan, and M. Shi, Chemical Fixation of Carbon Dioxide Catalyzed by Binaphthyldiamino Zn, Cu, and Co Salen-Type Complexes, J. Org. Chem., 68(4), 1559-1562 (2003). crossref(new window)

H. S. Kim, J. J. Kim, B. G. Lee, O. S. Jung, H. G. Jang, and S. O. Kang, Isolation of a Pyridinium Alkoxy Ion Bridged Dimeric Zinc Complex for the Coupling Reactions of $CO_2$ and Epoxides, Angew. Chem. Int. Ed. Engl., 39(22), 4096-4098 (2000). crossref(new window)

F. W. Li, C. G. Xia, L. W. Xu, W. Sun, and G. X. Chen, A Novel and Effective Ni Complex Catalyst System for the Coupling Reactions of Carbon Dioxide and Epoxides, Chem. Commun., 16, 2042-2043 (2003).

T. Aida and S. Inoue, Activation of Carbon Dioxide with Aluminum Porphyrin and Reaction with Epoxide. Studies on (tetraphenylporphinato) Aluminum Alkoxide having a Long Oxyalkylene Chain as the Alkoxide Group, J. Am. Chem. Soc., 105(5), 1304-1309 (1983). crossref(new window)

R. Sheldon, Catalytic Reactions in Ionic Liquids, Chem. Commun., 23, 2399-2407 (2001).

D.-B. Zhao, M. Wu, Y. Kou, and E.-Z. Min, Ionic Liquids: Applications in Catalysis, Catal.. Today, 74, 157-189 (2002). crossref(new window)

P. Wasserscheid and W. Keim, Ionic Liquids - New "Solutions" for Transition Metal Catalysis, Angew. Chem. Int. Ed., 39(21), 3772-3789 (2000). crossref(new window)

D. Jairton, F. D. S. Roberto, and A. Z. S. Paulo, Ionic Liquid (molten salt) Phase Organometallic Catalysis, Chem. Rev., 102(10), 3667-3692 (2002). crossref(new window)

K. N. Marsh, A. Deev, A. C. T. Wu, E. Tran, and A. Klamt, Room Temperature Ionic Liquids as Replacements for Conventional Solvents - a Review, Korean J. Chem. Eng., 19(3), 357-362 (2002). crossref(new window)

C. E. Song, W. H. Shim, E. J. Roh, and J. H. Choi, Scandium (III) Triflate Immobilized in Ionic Liquids: a Novel and Recyclable Catalytic System for Friedel-Crafts Alkylation of Aromatic Compounds with Alkenes, Chem. Commun., 17, 1695-1696 (2000).

D. W. Kim and D. W. Park, Organic-Inorganic Hyvrids of Imidazole Complexes of Zinc (II) for Catalysts in the Glycerolysis of Urea, J. Nanosci. Nanotechnol., 14(6), 4632-4638 (2014). crossref(new window)

A. Chowdhury and S. T. Thynell, Confined rapid thermolysis/FTIR/ToF studies of imidaolium-based ionic liquids, Thermochim. Acta., 443, 159-172 (2006). crossref(new window)

R. Roshan, Y. S. Hwang, R. Roshan, S. H. Ahn, A. C. Kathalikkattil, and D. W. Park, A novel approach of utilizing quaternized chitosan as a catalyst for the eco-friendly cycloaddition of epoxides with $CO_2$, Catal. Sci. Technol., 2, 1674-1680 (2012). crossref(new window)

A. C. Kathalikkattil, J. Tharun, R. Roshan, H. G. Soek, and D. W. Park, Efficient route for oxazolidinone synthesis using heterogeneous biopolymer catalysts from unactivated alkyl aziridine and $CO_2$ under mild conditions, Appl. Catal. A. Gen., 447, 107-114 (2012).

N. Vallapa, O. Wiarachai, N. Thongchul, J. Pan, V. Tangpasuthadol, S. Kiatkamjornwong, and V. P. Hoven, Enhancing antibacterial activity of chitosan surface by heterogeneous quaternization, Carbohydr. Polym., 83, 868-8875 (2011). crossref(new window)

I. Niedermaier, C. Kolbeck, N. Taccardi, P. S. Schulz, J. Li, T. Drewello, P. Wasserscheid, H. P. Steinruck, and F. Maier, Organic Reactions in Ionic Liquids Studied by in Situ XPS, Chem. Phys. Chem., 13, 1725-1735 (2012).

D. W. Park, B. S. Yu, E. S. Jeong, I. Kim, M. I. Kim, K. J. Oh, and S. W. Park, Comparative studies on the performance of immobilized quaternary ammonium salt catalysts for the addition of carbon dioxide to glycidyl methacrylate, Catal. Today, 98, 499-504 (2004). crossref(new window)