Advanced SearchSearch Tips
Preparation of Spherical Energetic Composites by Crystallization/Agglomeration and their Thermal Decomposition Characteristics
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Applied Chemistry for Engineering
  • Volume 27, Issue 2,  2016, pp.158-164
  • Publisher : The Korean Society of Industrial and Engineering Chemistry
  • DOI : 10.14478/ace.2015.1125
 Title & Authors
Preparation of Spherical Energetic Composites by Crystallization/Agglomeration and their Thermal Decomposition Characteristics
Lee, Eun-Ae; Shim, Hong-Min; Kim, Jae-Kyeong; Kim, Hyoun-Soo; Koo, Kee-Kahb;
  PDF(new window)
Spherical DADNE/AP (1,1-diamino-2,2-dinitroethylen/ammonium perchlorate) energetic composites were produced by drowning-out/agglomeration (D/A). The agglomeration of DADNE with AP particles was found to be affected by the amount of the bridging liquid, stirring velocity and residence time. The composites appeared to grow dramatically with the amount of bridging liquid which triggers agglomeration. As the stirring velocity and the residence time increased, the size of composites increased and then tended to decrease. Thermal gravimetric analysis showed that the addition of DADNE activates the low temperature decomposition (LTD) of AP. For the neat AP, the only about 30 wt% of AP was found to decompose at the LTD. On the other hand, it was found that 70 wt% of AP decomposed when DADNE was added by physical mixing and 90 wt% of AP decomposed when the DADNE/AP composites were prepared by the D/A method.
Ammonium perchlorate;DADNE;drowning-out/agglomeration (D/A);thermal decomposition;
 Cited by
A. Davenas, Solid Rocket Propulsion Technology, Pergamon Press Inc. NY, USA (1993).

Z. Zhou, S. Tian, D. Zeng, G. Tang, and C. Xie, MOX (M=Zn,Co,Fe)/AP shell-core nanocomposites for self-catalytical decomposition of ammonium perchlorate, J. Alloy. Compd., 513, 213-219 (2012). crossref(new window)

C. Wu, K. Sullivan, S. Chowdhury, G. Jian, L. Zhou, and M. R. Zachariah, Encapsulation of perchlorate salts within metal oxides for application as nanoenergetic oxidizers, Adv. Funct. Mater., 22, 78-85 (2012). crossref(new window)

E. Alizadeh-Gheshlaghi, B. Shaabani, A. Khodayari, Y. Azizian-Kalandaragh, and R. Rahimi, Investigation of the catalytic activity of nano-sized CuO, $Co_3O_4$ and $CuCo_2O_4$ powders on thermal decomposition of ammonium perchlorate, Powder Technol., 217, 330-339 (2012). crossref(new window)

R. Dubey, P. Srivastava, I. P. S. Kapoor, and G. Singh, Synthesis, characterization and catalytic behavior of Cu nanoparticles on the thermal decomposition of AP, HMX, NTO and composite solid propellants, Part 83, Thermochim. Acta, 549, 102-109 (2012). crossref(new window)

F.-Q. Zhao, P. Chen, and S.-W. Li, Effect of ballistic modifiers on thermal decomposition characteristics of RDX/AP/HTPB propellant, Thermochim. Acta, 416, 75-78 (2004). crossref(new window)

B. Florczak, A Comparision of Properties of Aluminized composite propellants containing HMX and FOX-7, Cent. Eur. J. Energ. Mat., 5, 103-111 (2008).

H. Bergman, H. Osmark, M-L. Pettersson, U. Bemm, and M. Hihkio, Some Initial Properties and Thermal Stability of FOX-7, IM & EM Technology Symposium, 346 (1999).

B. Florczak, Investigation of an Aluminized Binder/AP Composite Propellant Containing FOX-7, Cent. Eur. J. Energy Mater., 5, 65-75 (2008).

S. Karlsson, H. Ostmark, C. Eldsater, T. Carlsson, H. Bergman, S. Wallin, and A. Pettersson, Detonation and sensitivity properties of FOX-7 and formulations containing FOX-7, Proceedings of the 12th Detonation Symposium. August 11-16, San Diego, California (2002).

N. Latypov, J. Bergman, A. Langlet, U. Wellmar, and U. Bemm, Synthesis and reactions of 1,1-diamino-2,2-dinitroethylene, Tetrahedron, 54, 11525-11536 (1998). crossref(new window)

B. Janzon, H. Bergman, C. Eldsater, C. Lamnevik, and H. Ostmark, FOX-7-a novel, high performance, low vulnerability high explosive for warhead applications, Proceeding of 20th International Symposium on Ballistic, September 23-27, Orlando, Florida (2002).

S. Bhadra, M. Kumar, S. Jain, S. Agrawal, and G. P. Agrawal, spherical crystallization of mefenamic acid, Pharm. Technol., 28, 66-77 (2004).

S. K. Pagire, S. A. Korde, B. R. Whiteside, J. Kendrick, and A. Paradkar, Spherical crystallization of carbamazepine/saccharin co-crystals: Selective agglomeration and purification through surface interactions, Cryst. Growth Des., 13, 4162-4167 (2013). crossref(new window)

A. Khawam and D. R. Flanagan, Solid-state kinetic models: Basics and mathematical fundamentals, J. Phys. Chem. B, 110, 17315-17328 (2006). crossref(new window)

H. L. Friedman, Kinetics of thermal degradation of char-foaming plasctics from thermo-gravimetry-application to a phenolic resin, Polym. Sci., 6C, 183-195 (1963).

T. Ozawa, A new method of analyzing thermogravimetric data, Bull. Chem. Soc., 38, 1881 (1965). crossref(new window)

A. W. Coats and J. P. Redfern, Kinetic parameters from thermogravimetric data, Nature, 201, 68 (1964). crossref(new window)

S. Vyazovkin and C. A. Wight, Kinetics of Thermal Decomposition of Cubic Ammonium Perchlorate, Chem. Mater., 11, 3386-3393 (1999). crossref(new window)

V. V. Boldyrev, Thermal decomposition of ammonium perchlorate, Thermochim. Acta, 443, 1-36 (2006). crossref(new window)

A. V. Raevsky and G. B. Manelis, On the mechanism of decomposition of ammonium perchlorate, Dokl. Akad. Nauk SSSR, 151, 886-889 (1963).

Z. Yu, L. Chen, L. Lu, X. Yang, and X. Wang, DSC/TG-MS study on in situ catalytic thermal decomposition of ammonium perchlorate over $CoC_2O_4$, Chin. J. Catal., 30, 19-23 (2009). crossref(new window)

A. K. Galwey and M. E. Brown, Application of the Arrhenius equation to solid state kinetics: Can this be justified?, Thermochim. Acta, 386, 91-98 (2002). crossref(new window)

T. Niioka, T. Mitani, H. Miyajima, N. Saito, T. Sohue, K. Ninomiyya, and I. Aoki, The fundamental study of HMX composite propellant and its practical application, National Aerospace Laboratory Report TR-875, Japan (1985).

A, Zenin, HMX and RDX: Combustion mechanism and influence on modern double-base propellant combustion, J. Propul. Power, 11, 752-758 (1995). crossref(new window)