JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Synthesis of Tricyclopentadiene Using Ionic Liquid Supported Mesoporous Silica Catalysts
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Applied Chemistry for Engineering
  • Volume 27, Issue 2,  2016, pp.190-194
  • Publisher : The Korean Society of Industrial and Engineering Chemistry
  • DOI : 10.14478/ace.2016.1010
 Title & Authors
Synthesis of Tricyclopentadiene Using Ionic Liquid Supported Mesoporous Silica Catalysts
Kim, Su-Jung; Jeon, Jong-Ki; Han, Jeongsik; Yim, Jin-Heong;
  PDF(new window)
 Abstract
Tricyclopentadiene (TCPD) is one of the important precursors for making tetrahydrotricyclopentadiene, which is well known as a next-generation fuel with high energy density. In this study, TCPD was obtained by polymerization reaction of dicyclopentadiene (DCPD) using an ionic liquid (IL) supported mesoporous silica catalysts. ILs were supported to two kinds of mesoporous silica catalysts with different pore sizes such as MCM-41 and SBA-15. Four different ILs were supported to mesoporous silicas using anionic precursors such as CuCl or and cationic precursors such as triethylamine hydrochloride or 1-butyl-3-methylimidazolium chloride. We proved that IL supported mesoporous silicas showed better catalytic performance than those of using non-supported prestine IL in the aspect of TCPD yield and DCPD conversion. Among four kinds of IL supported mesoporous silica catalysts, CuCl-based IL supported MCM-41 system showed the highest TCPD yield.
 Keywords
dicyclopentadiene;tricyclopentadiene;mesoporous silica;ionic liquid;MCM-41;SBA-15;
 Language
Korean
 Cited by
 References
1.
H. S. Chung, C. S. H. Chen, R. A. Kremer, and J. R. Boulton, Recent developments in high-energy density liquid hydrocarbon fuels, Energy Fuels, 13, 641-649 (1999). crossref(new window)

2.
T. Edward, Liquid Fuels and Propellants for Aerospace Propulsion: 1903-200, J. Propul. Power, 19, 1089-1107 (2003). crossref(new window)

3.
Z. Xiong, Z. Mi, and X. Zhang, Study on the oligomerization of cyclopentadiene and dicyclopentadiene to tricyclopentadiene through Diels-Alder reaction, React. Kinet. Catal. Lett., 85, 89-97 (2005). crossref(new window)

4.
I. Palmova, J. Kose, J. Schongut, M. Marek, and K. Stepanek, Experimental and modeling studies of oligomerization and copolymerization of dicyclopentadiene, Chem. Eng. Sci., 56, 927-935 (2001). crossref(new window)

5.
Y. Li, J.-J. Zou, X. Zhang, L. Wang, and Z. Mi, Product distribution of tricyclopentadiene from cycloaddition of dicyclopentadiene and cyclopentadiene: A theoretical and experimental study, Fuel, 89, 2522-2527 (2010). crossref(new window)

6.
L. G. Cannell, High density fuels, US Patent 4,059,644 (1977).

7.
M. Y. Huang, J. C. Wu, F. S. Shieu, and J. J. Lin, Isomerization of exo-tetrahydrodicyclopentadiene to adamantane using an acidity-adjustable chloroaluminate ionic liquid, Catal. Commun, 10, 1747-1751 (2009). crossref(new window)

8.
J. Kim, J.-Y. Kim, E. Park, J. Han, T. S. Kwon, Y.-K. Park, and J.-K. Jeon, Isomerization of endo-tetrahydrodicyclopentadiene over Y zeolite catalysts, Appl. Chem. Eng., 25(1), 66-71 (2014). crossref(new window)

9.
S.-G. Kim, J. Han, J.-K. Jeon, and J.-H. Yim, Ionic liquid-catalyzed isomerization of tetrahydrotricyclopentadiene using various chloroaluminate complexes, Fuel, 137, 109-114 (2014). crossref(new window)

10.
D. H. Kim, J.-S. Han, J.-K. Jeon, and J.-H. Yim, A study on the reaction pathway of isomerization of tetrahydrotricyclopentadiene using ionic liquid catalyst, Appl. Chem. Eng., 26(3), 366-371 (2015). crossref(new window)

11.
J. S. Wilkes, Properties of ionic liquid solvents for catalysis, J. Mol. Catal. A: Chem., 214, 11-17 (2004). crossref(new window)

12.
H. J. Lee, J. S. Lee, and H. S. Kim, Applications of ionic liquids: the state of arts, Appl. Chem. Eng., 21, 129-136 (2010).

13.
Y.-L. Yang and Y. Kou, Determination of the Lewis acidity of ionic liquids by means of an IR spectroscopic probe, Chem. Comm., 226-227 (2004).

14.
J. S. Beck, J. C. VartUli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins, and J. L. Schlenkert, A New family of mesoporous molecular sieves prepared with liquid crystal templates, J. Am. Chem. Soc., 114, 10834-10843 (1992). crossref(new window)

15.
D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, and G. D. Stucky, Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures, J. Am. Chem. Soc., 120, 6024-6036 (1998). crossref(new window)

16.
M. H. Valkenberg, C. deCastro, and W. F. Holderich, Immobilisation of chloroaluminate ionic liquids on silica materials, Top. Catal., 14, 139-144 (2001).

17.
C. P. Mehnert, Supported ionic liquid catalysis, Chem. Eur. J., 11, 50-59 (2005). crossref(new window)

18.
M. H. Valkenberg, C. deCastro, and W. F. Holderich, Friedel-Crafts acylation of aromatics catalysed by supported ionic liquids, Appl. Catal. A., 215, 185-190 (2001). crossref(new window)

19.
W. Cheng, X. Chen, J. Sun, J. Wang, and S. Zhang, SBA-15 supported triazolium-based ionic liquids as highly efficient and recyclable catalysts for fixation of $CO_2$ with epoxides, Catal. Today, 200, 117-124 (2013). crossref(new window)

20.
W. Cheng, X. Chen, J. Sun, J. Wang, and S. Zhang, SBA-15 supported triazolium-based ionic liquids as highly efficient and recyclable catalysts for fixation of $CO_2$ with epoxides, Catal. Today, 200, 117-124 (2013). crossref(new window)

21.
M.-Y. Huang, J.-C. Wu, F.-S. Shieu, and J.-J. Lin, Isomerization of endo-tetrahydrodicyclopentadiene over clay-supported chloroaluminate ionic liquid catalysts, J. Mol. Catal. A: Chem., 315, 69-75 (2010). crossref(new window)

22.
K.-Y. Kwak M.-S. Kim, D.-W. Lee, Y.-H. Cho, J. S. Han, T. S. Kwon, and K.-Y. Lee, Synthesis of cyclopentadiene trimer (tricyclopentadiene) over zeolites and Al-MCM-41: The effects of pore size and acidity, Fuel, 137, 230-236 (2014). crossref(new window)