JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Electrohydrodynamic Instability at Surface of Block Copolymer/Titania Nanorods Thin Film
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Applied Chemistry for Engineering
  • Volume 27, Issue 2,  2016, pp.205-209
  • Publisher : The Korean Society of Industrial and Engineering Chemistry
  • DOI : 10.14478/ace.2016.1017
 Title & Authors
Electrohydrodynamic Instability at Surface of Block Copolymer/Titania Nanorods Thin Film
Bae, Joonwon;
  PDF(new window)
 Abstract
The influence of titania nanorods with an average diameter of 10 nm and an average length of 30 nm on the electrohydrodynamic instability of block copolymer (polystyrene-b-poly(2-vinylpyridine)) thin film was investigated in this article. The presence of titania nanorods increased the dielectric constant of the film, which resulted in a systematic reduction in the wavelength of the surface instability. Cross-sectional transmission electron microscopy analysis indicated that the migration/aggregation of titania nanorods did not occur as a result of the applied electric field. This work can provide a simple route to the pattern formation using electrohydrodynamic instability with an aid of nanoparticles.
 Keywords
electrohydrodynamic instability;titania nanorods;thin film;block copolymer;dielectric constant;
 Language
Korean
 Cited by
 References
1.
A. Vrij, Possible mechanism for the spontaneous rupture of thin, free liquid films, Discuss Faraday Soc., 42, 23-33 (1966). crossref(new window)

2.
M. B. Williams and S. H. Davis, Nonlinear theory of film rupture, J. Colloid Interface Sci., 90, 220-228 (1982). crossref(new window)

3.
A. Sharma and E. Ruckenstein, Finite-amplitude instability of thin free and wetting films: prediction of lifetimes, Langmuir, 2, 480-494 (1986). crossref(new window)

4.
G. Reiter, Dewetting of thin polymer films, Phys. Rev. Lett., 68, 75-78 (1992). crossref(new window)

5.
R. Yerushalmi-Rosen, J. Klein, and L. Fetters, Suppression of rupture in thin, nonwetting liquid films, Science, 263, 793-795 (1994). crossref(new window)

6.
A. Sharma and R. Khanna, Pattern formation in unstable thin liquid films, Phys. Rev. Lett., 81, 3463-3466 (1998). crossref(new window)

7.
M. Boltau, S. Walheim, J. Mlynek, G. Krausch, and U. Steiner, Surface-induced structure formation of polymer blends on patterned substrates, Nature, 391, 877-879 (2000).

8.
L. F. Pease III and W. B. Russel, Limitations on length scales for electrostatically induced submicrometer pillars and holes, Langmuir, 20, 795-804 (2004). crossref(new window)

9.
M. D. Morariu, N. E. Voicu, E. Schaffer, Z. Lin, and T. P. Russell, Hierarchical structure formation and pattern replication induced by an electric field, Nature Mater., 2, 48-52 (2003). crossref(new window)

10.
T. Xu, C. J. Hawker, and T. P. Russell, Interfacial energy effects on the electric field alignment of symmetric diblock copolymers, Macromolecules, 36, 6178-6182 (2003). crossref(new window)

11.
H. Xiang, Y. Lin, and T. P. Russell, Electrically induced patterning in block copolymer films, Macromolecues, 37, 5358-5363 (2004). crossref(new window)

12.
K. A. Leach, Z. Lin, and T. P. Russell, Early stages in the growth of electric field-induced surface fluctuations, Macromolecues, 38, 4868-4875 (2005). crossref(new window)

13.
J. Bae, E. Glogowski, S. Gupta, W. Chen, T. Emrick, and T. P. Russell, Effect of nanoparticles on the electrohydrodynamic instabilities of polymer/nanoparticle thin films, Macromolecues, 41, 2722-2726 (2008). crossref(new window)

14.
J. Bae, Electrohydrodynamic instabilities of polymer thin films: Filler effect, J. Ind. Eng. Chem., 18, 378-382 (2012). crossref(new window)

15.
J. Bae and S. H. Cha, Effect of nanoparticle surface functionality on microdomain orientation in block copolymer thin films under electric field, Polymer, 55, 2014-2020 (2014). crossref(new window)

16.
J. Bae, S. J. Park, O. S. Kwon, and J. Jang, The effect of nanoparticle on microdomain alignment in block copolymer thin films under an electric field, J. Mater. Sci., 49, 4323-4331 (2014). crossref(new window)

17.
X. Chen and S. S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications, Chem. Rev., 107, 2891-2959 (2007). crossref(new window)

18.
Y. Lin et al., Self-directed self-assembly of nanoparticle/copolymer mixtures, Nature, 434, 55-59 (2005). crossref(new window)

19.
N. Wu, L. F. Pease III, and W. B. Russell, Toward Large-Scale Alignment of Electrohydrodynamic Patterning of Thin Polymer Films, Adv. Funct. Mater., 16, 1992-1999 (2006). crossref(new window)

20.
S. Gupta, Q. Zhang, T. Emrick, A. C. Balazs, and T. P. Russell, Entropy-driven segregation of nanoparticles to cracks in multilayered composite polymer structures, Nature Mater., 5, 229-233 (2006). crossref(new window)