JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Modification of Water-borne Polyurethane Using Benzophenone Crosslinker
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Applied Chemistry for Engineering
  • Volume 27, Issue 2,  2016, pp.221-226
  • Publisher : The Korean Society of Industrial and Engineering Chemistry
  • DOI : 10.14478/ace.2016.1013
 Title & Authors
Modification of Water-borne Polyurethane Using Benzophenone Crosslinker
Kim, HyeokJin; Kim, Jin Chul; Chang, SangMok; Seo, BongKuk;
  PDF(new window)
 Abstract
Production of eco-friendly and biologically harmless materials is strongly required in all industries. In particular, reducing volatile organic compounds in coating processes is extremely important to secure worker`s safety. During recent two decades, extensive research works on water-borne polyurethane dispersion (PUD) have been continuously developed as an alternative to solvent-borne polyurethane. However, PUD was shown inferior mechanical properties to the organic solvent-borne polyurethane due to a limit to the molecular weight increase, which resulted in the limit of applications. To overcome this drawback, several approaches have been examined such as polymer blends and thermal/radiation induced crosslinking. Among these methods, the radiation curing system was suitable for industrialization because of the high crosslinking density and fast curing speed. In this study, we overcame the drawback for PUD via introducing benzophenone radiation curable units to PUD. We synthesized PUD films which possessed good dispersion in water for 30 days, increased Tg and Td more than after UV curing film as well as improved young`s modulus more than double.
 Keywords
water-borne polyurethane dispersion;photo-crosslinking;eco-friendly materials;hardness;stability dispersion;
 Language
Korean
 Cited by
 References
1.
K. L. Noble, Waterborne polyurethanes, Prog. Org. Coat., 32, 131-136 (1997). crossref(new window)

2.
B. K. Kim, Aqueous polyurethane dispersions, Colloid. Polym. Sci., 274, 599-611 (1996). crossref(new window)

3.
D. Dieterich, Neuere wassrige PUR-Systeme, Angew. Makromol. Chem., 98, 133-165 (1981). crossref(new window)

4.
S. M. Seyed Mohaghegh, M. Barikani, and A. A. Entezami, Preparation and Properties of Aqueous Polyurethane Dispersions J. Iran. Polym., 14, 163-167 (2005).

5.
J. Y. Park, B. Y. Jeong, J. M. Cheon, C. S. Ha, and J. H. Chun, Synthesis and Properties of Waterborne Polyurethane Using Epoxy Group (WPUE), J. Adhes. Interface., 16, 22-28 (2015). crossref(new window)

6.
B. K. Kim, D. S. Lee, C. H. Do, and H. M. Jeong, Polyurethane, Korea Polyurethane Society, Korea (2006).

7.
H. Xu, F. Qiu, Y. Wang, W. Wu, D. Yang, and Q. Guo, UV-curable waterborne polyurethane-acrylate: preparation, characterization and properties, Prog. Org. Coat., 73, 45-53 (2012).

8.
Y. J. Sim, E. K. Seo, G. J. Choi, S. J. Yoon, and J. H. Jang, UV-induced Crosslinking of Poly(vinyl acetate) Films Containing Benzophenone, Text. Color. Finish., 21, 33-38 (2009). crossref(new window)

9.
T. Zhang, W. Wu, X. Wang, and Y. Mu. Effect of average functionality on properties of UV-curable waterborne polyurethaneacrylate, Prog. Org. Coat., 68, 201-207 (2010). crossref(new window)

10.
H. D. Hwang, C. H. Park, J. I. Moon, H. J. Kim, and T. Masubuchi, UV-curing behavior and physical properties of waterborne UV-curable polycarbonate-based polyurethane dispersion, Prog. Org. Coat., 72, 663-675 (2011). crossref(new window)

11.
H. D. Kim and H. J. Kim, UV-curable low surface energy fluorinated polycatbonate-based polyurethane dispersion, J. Colloid Interface Sci., 362, 274-284 (2011). crossref(new window)

12.
J. W. Rosthauser, Process for coating aqueous dispersion of epoxy resin and blocked polyisocyanate containing chemically incorporated anionic hydrophilic group, US Patent 06,429,708 (1985).

13.
P. J. Peruzzo, P. S. Anbinder, O. R. Pardini, J. Vega, C. A. Costa, F. Galembeck, and J. I. Amalvy, Waterborne polyurethane/acrylate: Comparison of hybrid and blend systems, Prog. Org. Coat., 72, 429-437 (2011). crossref(new window)

14.
Y. Zhang, A. Asif, and W. Shi, Highly branched polyurethane acrylates and their waterborne UV curing coating, Prog. Org. Coat., 71, 295-301 (2011). crossref(new window)

15.
M. G. Hong, W. Y. Huh, T. G. Byun, and K. C. Song, Preparation of Atistatic Coating Solutions by Blending Aniline Terminated Waterborne Polyurethane with PEDOT/PSS, Kor. Chem. Eng. Res., 50, 614-620 (2012). crossref(new window)

16.
M. M. Rahman and H. D. Kim, Synhesis and Characterization of Waterborne Polyurethane Adhesives Containing Different Amount of Ionic Group (I), J. Appl. Polm. Sci., 102, 5684-5691 (2006). crossref(new window)

17.
H. S. Kim, J. S. You, J. O. Kwon, J. S. Kim, T. S. Lee, S. T. Noh, Y. O. Jang, D. K. Kim, and S. K. Kwon, Phase ehaviors of the GAP/PTMG Polyurethanes Chain Extended with 3-Azidopropane-1,2-Diol, Appl. Chem. Eng., 21, 377-384 (2010).

18.
V. D. Athawale and M. A. Kulkarni, Polyester polyols for waterborne polyurethane and hybrid dispersions, Prog. Org. Coat., 67, 44-54 (2010). crossref(new window)

19.
S. K. Christensen, M. C. Chiappelli, and R. C. Hayward, Gelation of Copolymers with Pendent Benzophenone Photo-Cross-Linkers, Macromol., 45, 5237-5246 (2012). crossref(new window)

20.
O. Paucker, C. A. Naumann, J. Ruhe, W. Knoll, and C. W. Frank, Photochemical Attachment of Polymer Films to Solid Surfaces via Monolayers of Benzophenone Derivatives, J. Am. Chem. Soc., 121, 8766-8770 (1999). crossref(new window)

21.
D. B. Hall, P. Underhell, and J. M. Torkelson, Spin coating of thin and ultrathin polymer films, Polym. Eng. Sci., 38, 2039-2045 (1998). crossref(new window)

22.
G. Holden, H. R. Legge, R. Quirk, and H. E. Schroeder, Thermoplastic Elastomers, 2nd ed., 15, Hanser Gardner, Cincinnati, Ohio, U.S.A. (1996).