JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Supported Metal Nanoparticles: Their Catalytic Applications to Selective Alcohol Oxidation
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Applied Chemistry for Engineering
  • Volume 27, Issue 3,  2016, pp.227-238
  • Publisher : The Korean Society of Industrial and Engineering Chemistry
  • DOI : 10.14478/ace.2016.1047
 Title & Authors
Supported Metal Nanoparticles: Their Catalytic Applications to Selective Alcohol Oxidation
Hussain, Muhammad Asif; Joseph, Nyanzi; Kang, Onyu; Cho, Young-Hun; Um, Byung-Hun; Kim, Jung Won;
  PDF(new window)
 Abstract
This review article highlights different types of nano-sized catalysts for the selective alcohol oxidation to form aldehydes (or ketones) with supported or immobilized metal nanoparticles. Metal nanoparticle catalysts are obtained through dispersing metal nanoparticles over a solid support with a large surface area. The nanocatalysts have wide technological applications to industrial and academic fields such as organic synthesis, fuel cells, biodiesel production, oil cracking, energy conversion and storage, medicine, water treatment, solid rocket propellants, chemicals and dyes. One of main reactions for the nanocatalyst is an aerobic oxidation of alcohols to produce important intermediates for various applications. The oxidation of alcohols by supported nanocatalysts including gold, palladium, ruthenium, and vanadium is very economical, green and environmentally benign reaction leading to decrease byproducts and reduce the cost of reagents as opposed to stoichiometric reactions. In addition, the room temperature alcohol oxidation using nanocatalysts is introduced.
 Keywords
alcohol oxidation;aldehyde;supported metal;metal nanoparticle;nanocatalyst;
 Language
English
 Cited by
 References
1.
S. Chaturvedi, P. N. Dave, and N. Shah, Applications of nano-catalyst in new era, J. Saudi Chem. Soc., 16, 307-325 (2012). crossref(new window)

2.
S. Chaturvedi and P. N. Dave, A review on the use of nanometals as catalysts for the thermal decomposition of ammonium perchlorate, J. Saudi Chem. Soc., 17, 135-149 (2013). crossref(new window)

3.
C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, Chemistry and properties of nanocrystals of different shapes, Chem. Rev., 105, 1025-1102 (2005). crossref(new window)

4.
A. T. Bell, The impact of nanoscience on heterogeneous catalysis, Science, 299, 1688-1691 (2003). crossref(new window)

5.
B. M. Trost, The atom economy-A search for synthetic efficiency, Science, 1471-1477 (1991).

6.
B. M. Trost, Atom economy-A challenge for organic synthesis: Homogeneous catalysis leads the way, Angew. Chem. Int. Ed., 34, 259-281 (1995). crossref(new window)

7.
R. A. Sheldon, Catalysis: The key to waste minimization, J. Chem. Tech. Biotechnol., 68, 381-388 (1997). crossref(new window)

8.
R. A. Sheldon and E factors, green chemistry and catalysis: An odyssey, Chem. Commun., 29, 3352-3365 (2008).

9.
J. A. Glaser, Green chemistry with nanocatalysts, Clean Technol. Environ. Policy, 14, 1-8 (2012). crossref(new window)

10.
C. H. Bartholomew and R. J. Farrauto, Fundamentals of Industrial Catalytic Processes, John Wiley & Sons (2011).

11.
N. R. Shiju and V. V. Guliants, Recent developments in catalysis using nanostructured materials, Appl. Catal., A, 356, 1-17 (2009). crossref(new window)

12.
J. Fan and Y. Gao, Nanoparticle-supported catalysts and catalytic reactions-A mini-review, J. Exp. Nanosci., 1, 457-475 (2006). crossref(new window)

13.
R. Narayanan and M. A. El-Sayed, Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution, Nano Lett., 4, 1343-1348 (2004). crossref(new window)

14.
Y. H. Kim, S. K. Hwang, J. W. Kim, and Y. S. Lee, Zirconia-supported ruthenium catalyst for efficient aerobic oxidation of alcohols to aldehydes, Ind. Eng. Chem. Res., 53, 12548-12552 (2014). crossref(new window)

15.
J. M. G. Carballo, J. Yang, A. Holmen, S. Garcia-Rodriguez, S. Rojas, M. Ojeda, and J. L. G. Fierro, Catalytic effects of ruthenium particle size on the Fischer-Tropsch synthesis, J. Catal., 284, 102-108 (2011). crossref(new window)

16.
B. Z. Zhan, M. A. White, T. K. Sham, J. A. Pincock, R. J. Doucet, K. R. Rao, K. N. Robertson, and T. S. Cameron, Zeolite-confined nano-RuO2: A green, selective, and efficient catalyst for aerobic alcohol oxidation, J. Am. Chem. Soc., 125, 2195-2199 (2003). crossref(new window)

17.
K. Mori, T. Hara, T. Mizugaki, K. Ebitani, and K. Kaneda, Hydroxyapatite-supported palladium nanoclusters: A highly active heterogeneous catalyst for selective oxidation of alcohols by use of molecular oxygen, J. Am. Chem. Soc., 126, 10657-10666 (2004). crossref(new window)

18.
T. Mitsudome, Y. Mikami, H. Funai, T. Mizugaki, K. Jitsukawa, and K. Kaneda, Oxidant free alcohol dehydrogenation using a reusable hydrotalcite supported silver nanoparticle catalyst, Angew. Chem., 120, 144-147 (2008). crossref(new window)

19.
X. Yang, X. Wang, and J. Qiu, Aerobic oxidation of alcohols over carbon nanotube-supported Ru catalysts assembled at the interfaces of emulsion droplets, Appl. Catal. A, 382, 131-137 (2010). crossref(new window)

20.
T. Mitsudome, Y. Mikami, K. Ebata, T. Mizugaki, K. Jitsukawa, and K. Kaneda, Copper nanoparticles on hydrotalcite as a heterogeneous catalyst for oxidant-free dehydrogenation of alcohols, Chem. Commun., 39, 4804-4806 (2008).

21.
L. C. Wang, Y. M. Liu, M. Chen, Y. Cao, H. Y. He, and K. N. Fan, $MnO_{2}$ nanorod supported gold nanoparticles with enhanced activity for solvent-free aerobic alcohol oxidation, J. Phys. Chem. C, 112, 6981-6987 (2008). crossref(new window)

22.
A. J. Plomp, H. Vuori, A. O. I. Krause, K. P. Jong, and J. H. Bitter, Particle size effects for carbon nanofiber supported platinum and ruthenium catalysts for the selective hydrogenation of cinnamaldehyde, Appl. Catal. A, 351, 9-15 (2008). crossref(new window)

23.
R. Zanella, S. Giorgio, C. R. Henry, and C. Louis, Alternative methods for the preparation of gold nanoparticles supported on $TiO_{2}$, J. Phys. Chem. B, 106, 7634-7642 (2002). crossref(new window)

24.
P. Haider and A. Baiker, Gold supported on Cu-Mg-Al-mixed oxides: Strong enhancement of activity in aerobic alcohol oxidation by concerted effect of copper and magnesium, J. Catal., 248, 175-187 (2007). crossref(new window)

25.
L. Madler, H. Kammler, R. Mueller, and S. Pratsinis, Controlled synthesis of nanostructured particles by flame spray pyrolysis, J. Aerosol Sci., 33, 369-389 (2002). crossref(new window)

26.
M. S. Kwon, N. Kim, C. M. Park, J. S. Lee, K. Y. Kang, and J. Park, Palladium nanoparticles entrapped in aluminum hydroxide: Dual catalyst for alkene hydrogenation and aerobic alcohol oxidation, Org. Lett., 7, 1077-1079 (2005). crossref(new window)

27.
S. Kim, S. W. Bae, J. S. Lee, and J. Park, Recyclable gold nanoparticle catalyst for the aerobic alcohol oxidation and C-C bond forming reaction between primary alcohols and ketones under ambient conditions, Tetrahedron., 65, 1461-1466 (2009). crossref(new window)

28.
N. Dimitratos, J. A. Lopez-Sanchez, D. Morgan, A. Carley, L. Prati, and G. J. Hutchings, Solvent free liquid phase oxidation of benzyl alcohol using Au supported catalysts prepared using a sol immobilization technique, Catal. Today, 122, 317-324 (2007). crossref(new window)

29.
S. Dahoah, Z. Nairoukh, M. Fanun, M. Schwarze, R. Schomacker, and J. Blum, Decarbonylation of water insoluble carboxaldehydes in aqueous microemulsions by some sol-gel entrapped catalysts, J. Mol. Catal. A: Chem., 380, 90-93 (2013). crossref(new window)

30.
Y. Hong, X. Yan, X. Liao, R. Li, S. Xu, L. Xiao, and J. Fan, Platinum nanoparticles supported on Ca(Mg)-zeolites for efficient room-temperature alcohol oxidation under aqueous conditions, Chem. Commun., 50, 9679-9682 (2014). crossref(new window)

31.
S. H. Joo, J. Y. Park, J. R. Renzas, D. R. Butcher, W. Huang, and G. A. Somorjai, Size effect of ruthenium nanoparticles in catalytic carbon monoxide oxidation, Nano Lett., 10, 2709-2713 (2010). crossref(new window)

32.
Z. Opre, D. Ferri, F. Krumeich, T. Mallat, and A. Baiker, Aerobic oxidation of alcohols by organically modified ruthenium hydroxyapatite, J. Catal., 241, 287-295 (2006). crossref(new window)

33.
S. Seok, M. A. Hussain, K. J. Park, J. W. Kim, and D. H. Kim, Sonochemical synthesis of PdO@ silica as a nanocatalyst for selective aerobic alcohol oxidation, Ultrason. Sonochem., 28, 178-184 (2016). crossref(new window)

34.
E. Gusta, V. Sundaramurthy, A. Dalai, and J. Adjaye, Hydrotreating of heavy gas oil derived from athabasca bitumen over Co-Mo/$\gamma$-$Al_{2}O_{3}$ catalyst prepared by sonochemical method, Top. Catal., 37, 147-153 (2006). crossref(new window)

35.
D. Srivastava, N. Perkas, A. Gedanken, and I. Felner, Sonochemical synthesis of mesoporous iron oxide and accounts of its magnetic and catalytic properties, J. Phys. Chem. B, 106, 1878-1883 (2002). crossref(new window)

36.
M. Haruta, N. Yamada, T. Kobayashi, and S. Iijima, Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide, J. Catal., 115, 301-309 (1989). crossref(new window)

37.
M. Okumura, S. Tsubota, and M. Haruta, Vital role of moisture in the catalytic activity of supported gold nanoparticles, Angew. Chem. Int. Ed., 43, 2129-2132 (2004). crossref(new window)

38.
S. Lee, C. Fan, T. Wu, and S. L. Anderson, CO oxidation on Au n/$TiO_{2}$ catalysts produced by size-selected cluster deposition, J. Am. Chem. Soc., 126, 5682-5683 (2004). crossref(new window)

39.
L. D. Socaciu, J. Hagen, T. M. Bernhardt, L. Woste, U. Heiz, H. Hakkinen, and U. Landman, Catalytic CO oxidation by free $Au_{2}^{-}$: Experiment and theory, J. Am. Chem. Soc., 125, 10437-10445 (2003). crossref(new window)

40.
B. Yoon, H. Hakkinen, U. Landman, A. S. Worz, J. M. Antonietti, S. Abbet, K. Judai, and U. Heiz, Charging effects on bonding and catalyzed oxidation of CO on $Au_{8}$ clusters on MgO, Science, 307, 403-407 (2005). crossref(new window)

41.
J. Han, Y. Liu, and R. Guo, Reactive template method to synthesize gold nanoparticles with controllable size and morphology supported on shells of polymer hollow microspheres and their application for aerobic alcohol oxidation in water, Adv. Funct. Mater., 19, 1112-1117 (2009). crossref(new window)

42.
C. Milone, R. Ingoglia, G. Neri, A. Pistone, and S. Galvagno, Gold catalysts for the liquid phase oxidation of o-hydroxybenzyl alcohol, Appl. Catal., A, 211, 251-257 (2001). crossref(new window)

43.
S. Carrettin, P. McMorn, P. Johnston, K. Griffin, and G. J. Hutchings, Selective oxidation of glycerol to glyceric acid using a gold catalyst in aqueous sodium hydroxide, Chem. Commun., 7, 696-697 (2002).

44.
C. Milone, R. Ingoglia, A. Pistone, G. Neri, and S. Galvagno, Activity of gold catalysts in the liquid-phase oxidation of o-hydroxybenzyl alcohol, Catal. Lett., 87, 201-209 (2003). crossref(new window)

45.
F. Porta and L. Prati, Selective oxidation of glycerol to sodium glycerate with gold-on-carbon catalyst: An insight into reaction selectivity, J. Catal., 224, 397-403 (2004). crossref(new window)

46.
D. V. Jawale, E. Gravel, V. Geertsen, H. Li, N. Shah, I. N. Namboothiri, and E. Doris, Aerobic oxidation of phenols and related compounds using carbon nanotube-gold nanohybrid catalysts, Chem. Cat. Chem., 6, 719-723 (2014).

47.
B. Karimi and F. K. Esfahani, Gold nanoparticles supported on $Cs_{2}CO_{3}$ as recyclable catalyst system for selective aerobic oxidation of alcohols at room temperature, Chem. Commun., 37, 5555-5557 (2009).

48.
B. Karimi and F. K. Esfahani, Gold nanoparticles supported on the periodic mesoporous organosilicas as efficient and reusable catalyst for room temperature aerobic oxidation of alcohols, Adv. Synth. Catal., 354, 1319-1326 (2012). crossref(new window)

49.
M. Mahyari, A. Shaabani, and Y. Bide, Gold nanoparticles supported on supramolecular ionic liquid grafted graphene: A bifunctional catalyst for the selective aerobic oxidation of alcohols, RSC Adv., 3, 22509-22517 (2013). crossref(new window)

50.
M. A. Hussain, M. Yang, T. J. Lee, J. W. Kim, and B. G. Choi, High density decoration of noble metal nanoparticles on polydopamine-functionalized molybdenum disulphide, J. Colloid Interface Sci., 451, 216-220 (2015). crossref(new window)

51.
N. Mizuno and K. Yamaguchi, Selective aerobic oxidations by supported ruthenium hydroxide catalysts, Catal. Today, 132, 18-26 (2008). crossref(new window)

52.
K. Yamaguchi, J. W. Kim, J. He, and N. Mizuno, Aerobic alcohol oxidation catalyzed by supported ruthenium hydroxides, J. Catal., 268, 343-349 (2009). crossref(new window)

53.
K. Yamaguchi and N. Mizuno, Scope, kinetics, and mechanistic aspects of aerobic oxidations catalyzed by ruthenium supported on alumina, Chem. Eur. J., 9, 4353-4361 (2003). crossref(new window)

54.
M. Kotani, T. Koike, K. Yamaguchi, and N. Mizuno, Ruthenium hydroxide on magnetite as a magnetically separable heterogeneous catalyst for liquid-phase oxidation and reduction, Green Chem., 8, 735-741 (2006). crossref(new window)

55.
K. Yamaguchi and N. Mizuno, Supported ruthenium catalyst for the heterogeneous oxidation of alcohols with molecular oxygen, Angew. Chem. Int. Ed., 41, 4538-4542 (2002). crossref(new window)

56.
K. Yamaguchi, K. Mori, T. Mizugaki, K. Ebitani, and K. Kaneda, Creation of a monomeric Ru species on the surface of hydroxyapatite as an efficient heterogeneous catalyst for aerobic alcohol oxidation, J. Am. Chem. Soc., 122, 7144-7145 (2000). crossref(new window)

57.
K. Mori, S. Kanai, T. Hara, T. Mizugaki, K. Ebitani, K. Jitsukawa, and K. Kaneda, Development of ruthenium-hydroxyapatite-encapsulated superparamagnetic $\gamma$-$Fe_{2}O_{3}$ nanocrystallites as an efficient oxidation catalyst by molecular oxygen, Chem. Mater., 19, 1249-1256 (2007). crossref(new window)

58.
K. Ebitani, H.-B. Ji, T. Mizugaki, and K. Kaneda, Highly active trimetallic Ru/$CeO_{2}$/CoO (OH) catalyst for oxidation of alcohols in the presence of molecular oxygen, J. Mol. Catal. A: Chem., 212, 161-170 (2004). crossref(new window)

59.
K. Ebitani, K. Motokura, T. Mizugaki, and K. Kaneda, Heterotrimetallic RuMnMn species on a hydrotalcite surface as highly efficient heterogeneous catalysts for liquid phase oxidation of alcohols with molecular oxygen, Angew. Chem., 117, 3489-3492 (2005). crossref(new window)

60.
H. Ji, T. Mizugaki, K. Ebitani, and K. Kaneda, Highly efficient oxidation of alcohols to carbonyl compounds in the presence of molecular oxygen using a novel heterogeneous ruthenium catalyst, Tetrahedron Lett., 43, 7179-7183 (2002). crossref(new window)

61.
H. B. Ji, K. Ebitani, T. Mizugaki, and K. Kaneda, Environmentally friendly alcohol oxidation using heterogeneous catalyst in the presence of air at room temperature, Catal. Commun., 3, 511-517 (2002). crossref(new window)

62.
D. I. Enache, D. W. Knight, and G. J. Hutchings, Solvent-free oxidation of primary alcohols to aldehydes using supported gold catalysts, Catal. Lett., 103, 43-52 (2005). crossref(new window)

63.
H. Guo, M. Kemell, A. Al-Hunaiti, S. Rautiainen, M. Leskela, and T. Repo, Gold-palladium supported on porous steel fiber matrix: Structured catalyst for benzyl alcohol oxidation and benzyl amine oxidation, Catal. Commun., 12, 1260-1264 (2011). crossref(new window)

64.
E. V. Johnston, O. Verho, M. D. Karkas, M. Shakeri, C. W. Tai, P. Palmgren, K. Eriksson, S. Oscarsson, and J. E. Backvall, Highly dispersed palladium nanoparticles on mesocellular foam: An efficient and recyclable heterogeneous catalyst for alcohol oxidation, Chem. Eur. J., 18, 12202-12206 (2012). crossref(new window)

65.
B. Karimi, S. Abedi, J. H. Clark, and V. Budarin, Highly efficient aerobic oxidation of alcohols using a recoverable catalyst: The role of mesoporous channels of SBA-15 in Stabilizing palladium nanoparticles, Angew. Chem. Int. Ed., 45, 4776-4779(2006). crossref(new window)

66.
V. Polshettiwar and R. S. Varma, Nanoparticle-supported and magnetically recoverable palladium (Pd) catalyst: A selective and sustainable oxidation protocol with high turnover number, Org. Biomol. Chem., 7, 37-40 (2009). crossref(new window)

67.
T. Nishimura, N. Kakiuchi, M. Inoue, and S. Uemura, Palladium (II)-supported hydrotalcite as a catalyst for selective oxidation of alcohols using molecular oxygen, Chem. Commun., 14, 1245-1246 (2000).

68.
U. R. Pillai and E. Sahle-Demessie, Selective oxidation of alcohols by molecular oxygen over a Pd/MgO catalyst in the absence of any additives, Green Chem., 6, 161-165 (2004). crossref(new window)

69.
Z. Hou, N. Theyssen, A. Brinkmann, K. V. Klementiev, W. Grunert, M. Buhl, W. Schmidt, B. Spliethoff, B. Tesche, and C. Weidenthaler, Supported palladium nanoparticles on hybrid mesoporous silica: Structure/activity-relationship in the aerobic alcohol oxidation using supercritical carbon dioxide, J. Catal., 258, 315-323 (2008). crossref(new window)

70.
C. M. Parlett, D. W. Bruce, N. S. Hondow, A. F. Lee, and K. Wilson, Support-enhanced selective aerobic alcohol oxidation over Pd/mesoporous silicas, ACS Catal., 1, 636-640 (2011). crossref(new window)

71.
N. Dimitratos, A. Villa, D. Wang, F. Porta, D. Su, and L. Prati, Pd and Pt catalysts modified by alloying with Au in the selective oxidation of alcohols, J. Catal., 244, 113-121 (2006). crossref(new window)

72.
A. Yoshida, Y. Takahashi, T. Ikeda, K. Azemoto, and S. Naito, Catalytic oxidation of aromatic alcohols and alkylarenes with molecular oxygen over Ir/$TiO_{2}$, Catal. Today, 164, 332-335 (2011). crossref(new window)

73.
S. Velusamy, A. Srinivasan, and T. Punniyamurthy, Copper (II) catalyzed selective oxidation of primary alcohols to aldehydes with atmospheric oxygen, Tetrahedron Lett., 47, 923-926 (2006). crossref(new window)

74.
S. G. Babu, P. A. Priyadarsini, and R. Karvembu, Copper on boehmite: A simple, selective, efficient and reusable heterogeneous catalyst for oxidation of alcohols with periodic acid in water at room temperature, Appl. Catal., A, 392, 218-224 (2011). crossref(new window)

75.
M. L. Kantam, R. Arundhathi, P. R. Likhar, and D. Damodara, Reusable copper aluminum hydrotalcite/rac BINOL system for room temperature selective aerobic oxidation of alcohols, Adv. Synth. Catal., 351, 2633-2637 (2009). crossref(new window)

76.
P. Gamez, I. W. Arends, R. A. Sheldon, and J. Reedijk, Room temperature aerobic copper-catalysed selective oxidation of primary alcohols to aldehydes, Adv. Synth. Catal., 346, 805-811 (2004). crossref(new window)

77.
G. Sarmah, S. K. Bharadwaj, A. Dewan, A. Gogoi, and U. Bora, An efficient and reusable vanadium based catalytic system for room temperature oxidation of alcohols to aldehydes and ketones, Tetrahedron Lett., 55, 5029-5032 (2014). crossref(new window)

78.
A. Shaabani, S. Keshipour, M. Hamidzad, and M. Seyyedhamzeh, Cobalt (II) supported on ethylenediamine-functionalized nanocellulose as an efficient catalyst for room temperature aerobic oxidation of alcohols, J. Chem. Sci., 126, 111-115 (2014). crossref(new window)

79.
J. D. Lou and Z.-N. Xu, Selective oxidation of primary alcohols with chromium trioxide under solvent free conditions, Tetrahedron Lett., 43, 6095-6097 (2002). crossref(new window)

80.
R. Sheldon, Metal-Catalyzed Oxidations of Organic Compounds: Mechanistic Principles and Synthetic Methodology Including Biochemical Processes. Elsevier (2012).

81.
X. Yang, X. Wang, C. Liang, W. Su, C. Wang, Z. Feng, C. Li, and J. Qiu, Aerobic oxidation of alcohols over Au/$TiO_{2}$: An insight on the promotion effect of water on the catalytic activity of Au/$TiO_{2}$, Catal. Commun., 9, 2278-2281 (2008). crossref(new window)

82.
A. Abad, P. Concepcion, A. Corma, and H. Garcia, A collaborative effect between gold and a support induces the selective oxidation of alcohols, Angew. Chem. Int. Ed., 44, 4066-4069 (2005). crossref(new window)

83.
J. Hu, L. Chen, K. Zhu, A. Suchopar, and R. Richards, Aerobic oxidation of alcohols catalyzed by gold nano-particles confined in the walls of mesoporous silica, Catal. Today, 122, 277-283 (2007). crossref(new window)

84.
W. Fang, Q. Zhang, J. Chen, W. Deng, and Y. Wang, Gold nanoparticles on hydrotalcites as efficient catalysts for oxidant-free dehydrogenation of alcohols, Chem. Commun., 46, 1547-1549 (2010). crossref(new window)

85.
D. I. Enache, D. Barker, J. K. Edwards, S. H. Taylor, D. W. Knight, A. F. Carley, and G. J. Hutchings, Solvent-free oxidation of benzyl alcohol using titania-supported gold-palladium catalysts: Effect of Au-Pd ratio on catalytic performance, Catal. Today, 122, 407-411 (2007). crossref(new window)

86.
A. Abad, C. Almela, A. Corma, and H. García, Efficient chemoselective alcohol oxidation using oxygen as oxidant. Superior performance of gold over palladium catalysts, Tetrahedron., 62, 6666-6672 (2006). crossref(new window)

87.
N. Kakiuchi, Y. Maeda, T. Nishimura, and S. Uemura, Pd (II)-Hydrotalcite-catalyzed oxidation of alcohols to aldehydes and ketones using atmospheric pressure of air, J. Org. Chem., 66, 6620-6625 (2001). crossref(new window)

88.
D. R. Jensen, J. S. Pugsley, and M. S. Sigman, Palladium-catalyzed enantioselective oxidations of alcohols using molecular oxygen, J. Am. Chem. Soc., 123, 7475-7476 (2001). crossref(new window)

89.
K. Mori, K. Yamaguchi, T. Hara, T. Mizugaki, K. Ebitani, and K. Kaneda, Controlled synthesis of hydroxyapatite-supported palladium complexes as highly efficient heterogeneous catalysts, J. Am. Chem. Soc., 124, 11572-11573 (2002). crossref(new window)

90.
R. Ciriminna, S. Campestrini, and M. Pagliaro, FluoRuGel: a versatile catalyst for aerobic alcohol oxidation in supercritical carbon dioxide, Org. Biomol. Chem., 4, 2637-2641 (2006). crossref(new window)

91.
N. Theyssen, Z. Hou, and W. Leitner, Selective oxidation of alkanes with molecular oxygen and acetaldehyde in compressed (supercritical) carbon dioxide as reaction medium, Chem. Eur. J., 12, 3401-3409 (2006). crossref(new window)

92.
Z. Hou, N. Theyssen, and W. Leitner, Palladium nanoparticles stabilised on PEG-modified silica as catalysts for the aerobic alcohol oxidation in supercritical carbon dioxide, Green Chem., 9, 127-132 (2007). crossref(new window)

93.
E. Choi, C. Lee, Y. Na, and S. Chang, $[RuCl_{2}(p-cymene)]_{2}$ on carbon: An efficient, selective, reusable, and environmentally versatile heterogeneous catalyst, Org. Lett., 4, 2369-2371 (2002). crossref(new window)

94.
P. A. Shapley, N. Zhang, J. L. Allen, D. H. Pool, and H.-C. Liang, Selective alcohol oxidation with molecular oxygen catalyzed by Os-Cr and Ru-Cr complexes, J. Am. Chem. Soc., 122, 1079-1091 (2000). crossref(new window)

95.
A. N. Kharat, P. Pendleton, A. Badalyan, M. Abedini, and M. M. Amini, Oxidation of aldehydes using silica-supported Co (II)-substituted heteropolyacid, J. Mol. Catal. A: Chem., 175, 277-283 (2001). crossref(new window)

96.
S. Murahashi, T. Naota, and N. Hirai, Aerobic oxidation of alcohols with ruthenium-cobalt bimetallic catalyst in the presence of aldehydes, J. Org. Chem., 58, 7318-7319 (1993). crossref(new window)

97.
Z. Opre, J.-D. Grunwaldt, M. Maciejewski, D. Ferri, T. Mallat, and A. Baiker, Promoted Ru-hydroxyapatite: Designed structure for the fast and highly selective oxidation of alcohols with oxygen, J. Catal., 230, 406-419 (2005). crossref(new window)

98.
Z. Opre, J.-D. Grunwaldt, T. Mallat, and A. Baiker, Selective oxidation of alcohols with oxygen on Ru-Co-hydroxyapatite: A mechanistic study, J. Mol. Catal. A: Chem., 242, 224-232 (2005). crossref(new window)

99.
F. Vocanson, Y. Guo, J. Namy, and H. Kagan, Dioxygen oxidation of alcohols and aldehydes over a cerium dioxide-ruthenium system, Synth. Commun., 28, 2577-2582 (1998). crossref(new window)