JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Recent Trends in Composite Materials for Aircrafts
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Applied Chemistry for Engineering
  • Volume 27, Issue 3,  2016, pp.252-258
  • Publisher : The Korean Society of Industrial and Engineering Chemistry
  • DOI : 10.14478/ace.2016.1043
 Title & Authors
Recent Trends in Composite Materials for Aircrafts
Kim, Deuk Ju; Oh, Dae Youn; Jeong, Moon Ki; Nam, Sang Yong;
  PDF(new window)
 Abstract
The weight reduction and improved mechanical property are one of the prime factors to develop new materials for the aerospace industry. Composite materials have thus become the most attractive candidate for aircraft and other means of transportations due to their excellent property and light weight. In particular, fiber reinforced polymer (FRP) composite materials have been used as an alternative to metals in the aircraft. The composite materials have shown improved properties compared to those of metal and polymeric materials, which made the composites being used as the skin structure of the airplane. This review introduces different types of materials which have been developed from the FRP composite material and also one of the most advantageous ways to employ the composites in aircraft.
 Keywords
Composite;aircraft;fiber reinforced polymer;nondestructive testing;
 Language
Korean
 Cited by
 References
1.
E. C. Botelho, R. A. Silva, L. C. Pardini, and M. C. Rezende, A review on the development and properties of continuous fiber/epoxy/aluminum hybrid composites for aircraft structures, Mater. Res., 9, 247-256 (2006).

2.
Y. Xu and S. Van Hoa, Mechanical properties of carbon fiber reinforced epoxy/clay nanocomposites, Compos. Sci. Technol., 68, 854-861 (2008). crossref(new window)

3.
P. D. Mangalgiri, Composite materials for aerospace applications, Bull. Mater. Sci., 22, 657-664 (1999). crossref(new window)

4.
C. Soutis, Fibre reinforced composites in aircraft construction, Prog. Aerosp. Sci., 41, 143-151 (2005). crossref(new window)

5.
R. Hosseinzadeh, M. M. Shokrieh, and L. Lessard, Damage behavior of fiber reinforced composite plates subjected to drop weight impacts, Compos. Sci. Technol., 66, 61-68 (2006). crossref(new window)

6.
J. Gustin, A. Joneson, M. Mahinfalah, and J. Stone, Low velocity impact of combination Kevlar/carbon fiber sandwich composites, Compos. Struct., 69, 396-406 (2005). crossref(new window)

7.
D. C. Davis, J. W. Wilkerson, J. Zhu, and D. O. O. Ayewah, Improvements in mechanical properties of a carbon fiber epoxy composite using nanotube science and technology, Compos. Struct., 92, 2653-2662 (2010). crossref(new window)

8.
C. Soutis, Carbon fiber reinforced plastics in aircraft construction, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct., 412, 171-176 (2005). crossref(new window)

9.
X. F. Wu, A. Rahman, Z. Zhou, D. D. Pelot, S. Sinha-Ray, B. Chen, S. Payne, and A. L. Yarin, Electrospinning core-shell nanofibers for interfacial toughening and self-healing of carbon-fiber/epoxy composites, J. Appl. Polym. Sci., 129, 1383-1393 (2013). crossref(new window)

10.
K. Diamanti and C. Soutis, Structural health monitoring techniques for aircraft composite structures, Prog. Aerosp. Sci., 46, 342-352 (2010). crossref(new window)

11.
G. Nitesh, M. J. Augustin, P. S. Sakthi Sathya, J. Saransh, S. R. Viswamurthy, G. M. Kotresh, and S. Ramesh, Structural health monitoring of composite aircraft structures using fiber Bragg grating sensors, J. Indian Inst. Sci., 93, 735-750 (2013).

12.
W. J. Staszewski, S. Mahzan, and R. Traynor, Health monitoring of aerospace composite structures-A ctive and passive approach, Compos. Sci. Technol., 69, 1678-1685 (2009). crossref(new window)

13.
J. Degrieck, W. De Waele, and P. Verleysen, Monitoring of fibre reinforced composites with embedded optical fibre Bragg sensors, with application to filament wound pressure vessels, NDT E Int., 34, 289-296 (2001). crossref(new window)

14.
Y. Y. Hung, Shearography: a new optical method for strain measurement and nondestructive testing, Opt. Eng. 21, 213391 (1982).

15.
C. Boller, F.-K. Chang, and Y. Fujino, Encyclopedia of Structural Health Monitoring, 1st ed., Wiley, NJ, USA (2009).

16.
R. Grimberg, D. Premel, A. Savin, Y. Le Bihan, and D. Placko, Eddy current holography evaluation of delamination in carbon-epoxy composites, Insight, 43, 260-264 (2001).

17.
J. L. Rose, Ultrasonic Waves in Solid Media, 1st ed., Cambridge university press, Cambridge, UK (2004).

18.
C. R. Ramirez-Jimenez, N. Papadakis, N. Reynolds, T. H. Gan, P. Purnell, and M. Pharaoh, Identification of failure modes in glass/polypropylene composites by means of the primary frequency content of the acoustic emission event, Compos. Sci. Technol., 64, 1819-1827 (2004). crossref(new window)

19.
P. Cawley and R. D. Adams, Sensitivity of the coin-tap method of nondestructive testing, Mater. Eval., 47, 558-563 (1989).

20.
R. Halmshaw, Development of industrial radiography technique over the last fifty years, Insight, 37, 684-687 (1995).

21.
H. Pihtili and N. Tosun, Effect of load and speed on the wear behaviour of woven glass fabrics and aramid fibre-reinforced composites, Wear, 252, 979-984 (2002). crossref(new window)

22.
M. J. John and S. Thomas, Biofibres and biocomposites, Carbohydr. Polym., 71, 343-364 (2008). crossref(new window)

23.
M. Z. Abedin, M. D. H. Beg, K. L. Pickering, and M. A. Khan, Study on the mechanical properties of jute/glass fiber-reinforced unsaturated polyester hybrid composites: Effect of surface modification by ultraviolet radiation, J. Reinf. Plast. Compos., 25, 575-588 (2006).

24.
K. Imielinska and L. Guillaumat, The effect of water immersion ageing on low-velocity impact behaviour of woven aramid-glass fibre/epoxy composites, Compos. Sci. Technol., 64, 2271-2278 (2004). crossref(new window)

25.
H. N. Dhakal, Z. Y. Zhang, M. O. W. Richardson, and O. A. Z. Errajhi, The low velocity impact response of non-woven hemp fibre reinforced unsaturated polyester composites, Compos. Struct., 81, 559-567 (2007). crossref(new window)

26.
H. N. Dhakal, Z. Y. Zhang, R. Guthrie, J. MacMullen, and N. Bennett, Development of flax/carbon fibre hybrid composites for enhanced properties, Carbohydr. Polym., 96, 1-8 (2013). crossref(new window)

27.
S. Wang and J. Qiu, Enhancing thermal conductivity of glass fiber/polymer composites through carbon nanotubes incorporation, Compos. B-Eng., 41, 533-536 (2010). crossref(new window)

28.
T. H. Hsieh, A. J. Kinloch, K. Masania, J. S. Lee, A. C. Taylor, and S. Sprenger, The toughness of epoxy polymers and fibre composites modified with rubber microparticles and silica nanoparticles, J. Mater. Sci., 45, 1193-1210 (2010). crossref(new window)

29.
N. A. Siddiqui, R. S. C. Woo, J.-K. Kim, C. C. K. Leung, and A. Munir, Mode I interlaminar fracture behavior and mechanical properties of CFRPs with nanoclay-filled epoxy matrix, Compos. A-Appl. Sci. Manuf., 38, 449-460 (2007). crossref(new window)

30.
M. H. G. Wichmann, J. Sumfleth, F. H. Gojny, M. Quaresimin, B. Fiedler, and K. Schulte, Glass-fibre-reinforced composites with enhanced mechanical and electrical properties benefits and limitations of a nanoparticle modified matrix, Eng. Fract. Mech., 73, 2346-2359 (2006). crossref(new window)

31.
T. Ogasawara, Y. Ishida, and T. Kasai, Mechanical properties of carbon fiber/fullerene-dispersed epoxy composites, Compos. Sci. Technol., 69, 2002-2007 (2009). crossref(new window)

32.
T. Yokozeki, Y. Iwahori, M. Ishibashi, T. Yanagisawa, K. Imai, M. Arai, T. Takahashi, and K. Enomoto, Fracture toughness improvement of CFRP laminates by dispersion of cup-stacked carbon nanotubes, Compos. Sci. Technol., 69, 2268-2273 (2009). crossref(new window)

33.
A. Godara, L. Mezzo, F. Luizi, A. Warrier, S. V. Lomov, A. W. Van Vuure, L. Gorbatikh, P. Moldenaers, and I. Verpoest, Influence of carbon nanotube reinforcement on the processing and the mechanical behaviour of carbon fiber/epoxy composites, Carbon, 47, 2914-2923 (2009). crossref(new window)

34.
A. Warrier, A. Godara, O. Rochez, L. Mezzo, F. Luizi, L. Gorbatikh, S. V. Lomov, A. W. VanVuure, and I. Verpoest, The effect of adding carbon nanotubes to glass/epoxy composites in the fibre sizing and/or the matrix, Compos. A-Appl. Sci. Manuf., 41, 532-538 (2010). crossref(new window)

35.
M. R. Kessler, N. R. Sottos, and S. R. White, Self-healing structural composite materials, Compos. A-Appl. Sci. Manuf., 34, 743-753 (2003). crossref(new window)

36.
A. Zucchelli, M. L. Focarete, C. Gualandi, and S. Ramakrishna, Electrospun nanofibers for enhancing structural performance of composite materials, Polym. Adv. Technol., 22, 339-349 (2011). crossref(new window)

37.
J. S. Kim and D. H. Reneker, Mechanical properties of composites using ultrafine electrospun fibers, Polym. Compos., 20, 124-131 (1999). crossref(new window)

38.
H. M. S. lqbal, A. A. Stec, P. Patel, S. Bhowmik, and R. Benedictus, Study of the fire resistant behavior of unfilled and carbon nanofibers reinforced polybenzimidazole coating for structural applications, Polym. Adv. Technol., 25, 29-35 (2014). crossref(new window)