Advanced SearchSearch Tips
Studies on Adsorption and Desorption of Ammonia Using Covalent Organic Framework COF-10
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Applied Chemistry for Engineering
  • Volume 27, Issue 3,  2016, pp.265-269
  • Publisher : The Korean Society of Industrial and Engineering Chemistry
  • DOI : 10.14478/ace.2016.1025
 Title & Authors
Studies on Adsorption and Desorption of Ammonia Using Covalent Organic Framework COF-10
Yang, Heena; Kim, Iktae; Ko, Youngdon; Kim, Shindong; Kim, Whajung;
  PDF(new window)
Ammonia gas as a hydrogen source has received great attention since the importance of hydrogen gas as a clean energy source increased. However, ammonia is toxic and corrosive to metal such that the absorbent that can store and transport ammonia became an important issue. As an effort to solve this, a large pored covalent organic framework, COF-10 was proposed as an adsorbent for storage and safe transportation of ammonia. During the ammonia adsorption process, boron in COF-10 structure can act as a Lewis acid site and bind with ammonia. In this study, COF was synthesized and its structure was identified by BET, XRD and FT-IR. The adsorption characteristics of COF were investigated by TPD and adsorption isotherm. The COF-10 showed an excellent adsorption capacity for ammonia (9.79 mmol/g) which could be utilized as an ammonia adsorbent.
 Cited by
J. Phillips, Control and pollution prevention options for ammonia emissions, EPA-456/R-95-002, 1-69, ViGYAN Incorporated, VA, USA (1995).

D. A. Kramer, Mineral and Commodities Summaries, US Geological Survey, Washington, USA (2007).

Y. Song and J. H. Dai, Mechanisms of dopants influence on hydrogen uptake in COF-108: A first principles study, Int. J. Hydrogen Energy, 38, 14668-14674 (2013). crossref(new window)

T. G. Glover, G. W. Peterson, J. B. DeCoste, and M. A. Browe, Adsorption of ammonia by sulfuric acid treated zirconium hydroxide, Langmuir, 28(28), 10478-10487 (2012). crossref(new window)

A. Qajar, M. Peer, M. R. Andalibi, R. Rajagopalan, and H. C. Foley, Enhanced ammonia adsorption on functionalized nanoporous carbons, Microporous. Mesoporous. Mater., 218, 15-23 (2015). crossref(new window)

A. M. B. Furtado, Y. Wang, T. G. Glover, and M. D. LeVan, MCM-41 impregnated with active metal sites:Synthesis, characterization, and ammonia adsorption, Microporous. Mesoporous. Mater., 142, 730-739 (2011). crossref(new window)

C. Petit, B. Mendoza, and T. J. Bandosz, Reactive adsorption of ammonia on Cu-based MOF/graphene composites, Langmuir, 26(19), 15302-15309 (2010). crossref(new window)

T. Yan, T. X. Li, H. Li, and R. Z. Wang, Experimental study of the ammonia adsorption characteristics on the composite sorbent of $CaCl_{2}$ and multi-walled carbon nanotubes, Int. J. Refrig., 46, 165-172 (2014). crossref(new window)

C. H. Christensen, R. Z. Sorensen, T. Johannessen, U. J. Quaade, K. Honkala, T. D. Elmoe, R. Kohler, and J. K. Norskov, Metal ammine complexes for hydrogen storage, J. Mater. Chem., 15, 4106-4108 (2005). crossref(new window)

D. Beaudoin, T. Maris, and J. D. Wuest, Constructing monocrystalline covalent organic networks by polymerization, Nat. Chem., 5, 830-834 (2013). crossref(new window)

A. P. Cote, A. I. Benin, N. W. Ockwig, M. O'Keeffe, A. J. Martzger, and O. M. Yaghi, Porous, crystalline, covalent organic frameworks, Science, 310(5751), 1166-1170 (2005). crossref(new window)

Z. Xiang and D. Cao, Porous covalent-organic materials: synthesis, clean energy application and design, J. Mater. Chem. A, 1, 2691-2718 (2012).

J. F. Dienstmaier, A. M. Gigler, A. J. Goetz, P. Knochel, T. Bein, A. Lyapin, S. Reichlmaier, W. M. Heckl, and M. Lackinger, Synthesis of well-ordered COF monolayers: surface growth of nanocrystalline precursors versus direct on-surface polycondensation, ACS Nano, 5(12), 9737-9745 (2011). crossref(new window)

Y. Xu, S. Jin, H. Xu, A. Nagai, and D. Jiang, Conjugated microporous polymers: design, synthesis and application, Chem. Soc. Rev., 42, 8012-8031 (2013). crossref(new window)

Q. Liu, Z. Tang, M. Wu, and Z. Zhou, Design, preparation and application of conjugated microporous polymers, Polym. Int., 63(3), 381-392 (2014). crossref(new window)

S. B. Kalidindi, C. Wiktor, A. Ramakrishnan, J. Webing, A. Schneemann, G. V. Tendeloo, and R. A. Fischer, Lewis base mediated efficient synthesis and solvation-like host-guest chemistry of covalent organic framework-1, Chem. Commun., 49, 463-465 (2013). crossref(new window)

J. R. Hunt, C. J. Doonan, J. D. LeVangie, A. P. Cote, and O. M. Yaghi, Reticular synthesis of covalent organic borosilicate frameworks, J. Am. Chem. Soc., 130(36), 11872-11873 (2008). crossref(new window)

L. Zhao and C. Zhong, Negative thermal expansion in covalent organic framework COF-102, J. Phys. Chem. C., 113(39), 16860-16862 (2009). crossref(new window)

E. L. Spitler, M. R. Giovino, S. L. White, and W. R. Dichtel, A mechanistic study of Lewis acid-catalyzed covalent organic framework formation, Chem. Sci., 2, 1588-1593 (2011). crossref(new window)

J. Zhang, L. Wang, N. Li, J. Liu, W. Zhang, N. Zhou, and X. Zhu, A novel azobenzene covalent organic framework, Cryst. Eng. Comm., 16, 6547-6551 (2014). crossref(new window)

Y. Peng, T. Ben, Y. Jia, D. Yang, H. Zhao, S. Qiu, and X. Yao, Dehydrogenation of ammonia borane confined by low-density porous aromatic famework, J. Phys. Chem., 116(49), 25694-25700 (2012).

C. J. Doonan, D. J. Tranchemontagne, T. G. Glover, J. R. Hunt, and O. M. Yaghi Exceptional ammonia uptake by a covalent organic framework, Nat. Chem., 2, 235-238 (2010). crossref(new window)

A. P. Cote, Reticular Synthesis of Microporous and Mesoporous 2D Covalent-Organic Frameworks, J. Am. Chem. Soc., 129(43), 12914-12915 (2007). crossref(new window)

G. Guan, T. Kida, K. Jusakabe, K. Kimura, E. Abe, and A. Yoshida, Photocatalytic activity of CdS nanoparticles incorporated in titanium silicate molecular sieves of ETS-4 and ETS-10, Appl. Catal. A, 71-78 (2005).