Advanced SearchSearch Tips
Mechanical and Thermal Properties of Epoxy Composites Reinforced Fluorinated Illite and Carbon Nanotube
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Applied Chemistry for Engineering
  • Volume 27, Issue 3,  2016, pp.285-290
  • Publisher : The Korean Society of Industrial and Engineering Chemistry
  • DOI : 10.14478/ace.2016.1033
 Title & Authors
Mechanical and Thermal Properties of Epoxy Composites Reinforced Fluorinated Illite and Carbon Nanotube
Lee, Kyeong Min; Lee, Si-Eun; Kim, Min Il; Kim, Hyeong Gi; Lee, Young-Seak;
  PDF(new window)
To improve properties of epoxy composites, surfaces of the illite and carbon nanotube (CNT) were treated by fluorine gas. The fluorinated illite and CNT were then characterized by X-ray photoelectron microscopy (XPS) and the mechanical and thermal properties of their composites were evaluated. The tensile and impact strengths and thermal stability of the composites increased upto about 59%, 18% and 124%, respectively compared to those of the neat epoxy. Improvements of mechanical and thermal properties in the composites were attributed that the fluorination of illite and carbon nanotube helps to enhance the dispersion in epoxy resin and interfacial interaction between them.
fluorination;illite;carbon nanotube;epoxy composites;
 Cited by
양극산화 처리에 따른 탄소섬유 표면의 페놀릭 하이드록실 관능기 비율의 증가가 에폭시기지 복합재료의 기계적 계면결합 특성에 미치는 영향,김동규;김관우;한웅;송범근;오상엽;방윤혁;김병주;

공업화학, 2016. vol.27. 5, pp.472-477 crossref(new window)
Effects of Increase in Ratio of Phenolic Hydroxyl Function on Carbon Fiber Surfaces by Anodic Oxidation on Mechanical Interfacial Bonding of Carbon Fibers-reinforced Epoxy Matrix Composites, Applied Chemistry for Engineering, 2016, 27, 5, 472  crossref(new windwow)
R. Das, S. L. Banerjee, R. Kumar, and P. P. Kundu, Development of sustainable elastomeric engineering nanocomposites from linseed oil with improved mechanical stability and thermally induced shape memory properties, J. Ind. Eng. Chem., 35, 388-399 (2016). crossref(new window)

M. O. Ansan, S. P. Ansan, S. K. Yadav, T. Anwer, M. H. Cho, and F. Mohammad, Ammonia vapor sensing and electrical properties of fibrous multi-walled carbon nanotube/polyaniline nanocomposites prepared in presence of cetyl-trimethylammonium bromide, J. Ind. Eng. Chem., 20, 2010-2017 (2014). crossref(new window)

F. Gardea and D. C. Lagoudas, Characterization of electrical and thermal properties of carbon nanotube/epoxy composites, Composites Part B, 56, 611-620 (2014). crossref(new window)

T. Giang and J. Kim, Effect of backbone moiety in diglycidylether-terminated liquid crystalline epoxy on thermal conductivity of epoxy/alumina composite, J. Ind. Eng. Chem., 30, 77-84 (2015). crossref(new window)

B. G. Son, T. S. Hwang, and D. C. Goo, Fire-retardation properties of polyurethane nanocomposite by filling inorganic nano flame retardant, Polym. Korea, 31, 404-409 (2007).

J. Bujdak, E. Hackett, and E. P. Giannelis, Effect of layer charge on the intercalation of poly(ethylene oxide) in layered silicates: Implications on nanocomposite polymer electrolytes, Chem. Mater., 12, 2168-2174 (2000). crossref(new window)

S. J. Park, D. I. Seo, and C. Nah, Effect of acidic surface treatment of red mud on mechanical interfacial properties of epoxy/red mud nanocomposites, J. Colloid Interface Sci., 251, 225-229 (2002). crossref(new window)

X. Zhao, J. Li, Y. Zhang, H. Dong, J. Qu, and Tao Qi, Preparation of nanosized anatase TiO2-coated illite composite pigments by $Ti(SO_{4})_{2}$ hydrolysis, Powder Technol., 271, 262-269 (2015). crossref(new window)

E. Jeong, J. W. Lim, K. W. Seo, and Y. S. Lee, Effects of physicochemical treatments of illite on the thermo-mechanical properties and thermal stability of illite/epoxy composites, J. Ind. Eng. Chem., 17, 77-82 (2011). crossref(new window)

J. H. Kim, T. D. Dao, and H. M. Jeong, Aluminum hydroxide-CNT hybrid material for synergizing the thermal conductivity of alumina sphere/thermoplastic polyurethane composite with minimal increase of electrical conductivity, J. Ind. Eng. Chem., 33, 150-155 (2016). crossref(new window)

M. Y. Koo, H. C. Shin, W. S. Kim, and G. W. Lee, Properties of multi-walled carbon nanotube reinforced epoxy composites fabricated by using sonication and shear mixing, Carbon Lett., 15, 255-261 (2014). crossref(new window)

W. S. Tung, V. Bird, R. J. Composto, N. Clarke, and K. I. Winey, Polymer chain conformations in CNT/PS nanocomposites from small angle neutron scattering, Macromolecules, 46, 5345-5354 (2013). crossref(new window)

G. Mittal, V. Dhand, K. Y. Rhee, S. J. Park, and W. R. Lee, A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites, J. Ind. Eng. Chem., 21, 11-25 (2015). crossref(new window)

H. Maka, T. Spychaj, and M. Zenker, High performance epoxy composites cured with ionic liquids, J. Ind. Eng. Chem., 31, 192-198 (2015). crossref(new window)

S. H. Park and J. Bae, Tailoring environment friendly carbonnanostructures by surfactant mediated interfacial engineering, J. Ind. Eng. Chem., 30, 1-9 (2015). crossref(new window)

K. Yang, X. Huang, Y. Huang, L. Xie, and P. Jiang, Fluoro-@$PolymerBaTiO_{3}$ hybrid nanoparticles prepared via RAFT polymerization: toward ferroelectric polymer nanocomposites with high dielectric constant and low dielectric loss for energy storage application, Chem. Mater., 25, 2327-2338 (2013). crossref(new window)

Y. Ganesan, H. Salahshoor, C. Peng, V. Khabashesku, J. Zhang, A. Care, N. Rahbar, and J. Lou, Fracture toughness of the sidewall fluorinated carbon nanotube-epoxy interface, J. Appl. Phys., 115, 224-305 (2014).

E. Jeong and Y. S. Lee, Fluoro-illite/polypropylene composite fiber formation and their thermal and mechanical properties, Appl. Chem. Eng., 22, 467-472 (2011).

M. J. Jung, E. Jeong, and Y. S. Lee, The surface chemical properties of multi-walled carbon nanotubes modified by thermal fluorination for electric double-layer capacitor, Appl. Surf. Sci., 347, 250-257 (2015). crossref(new window)

M. J. Kim, M. J. Jung, S. S. Choi, and Y. S. Lee, Adsorption characteristics of toluene gas using fluorinated phenol-based activated carbons, Appl. Chem. Eng., 26, 587-592 (2015). crossref(new window)

M. J. Kim, M. J. Jung, S. S. Choi, and Y. S. Lee, Effects of the fluorination of activated carbons on the chromium ion adsorption, Appl. Chem. Eng., 26, 92-98 (2015). crossref(new window)

O. K. Park, T. Jeevananda, N. H. Kim, S. I. Kim, and J. H. Lee, Effects of surface modification on the dispersion and electrical conductivity of carbon nanotube/polyaniline composites, Scripta Mater., 60, 551-554 (2009). crossref(new window)

Y. Hattori, N. Noguchi, F. Okino, H. Touhara, Y. Nakahigashi, S. Utsumi, H. Tanaka, H. Kanoh, and K. Kaneko, Defluorination-enhanced hydrogen adsorptivity of activated carbon fibers, Carbon, 45, 1391-1395 (2007). crossref(new window)

S. G. Lee, J. C. Won, J. H. Lee, and K. Y. Choi, Flame retardancy of polypropylene/montmorillonite nanocomposites, Polym. Korea, 29, 248-252 (2005).

H. R. Yu, E. Jeong, J. Kim, and Y. S. Lee, Influence of fluoro-illite on flame retardant property of epoxy complex, Polym. Korea, 35, 47-51 (2011). crossref(new window)

J. S. Im, S. K. Lee, S. J. In, and Y. S. Lee, Improved flame retardant properties of epoxy resin by fluorinated MMT/MWCNT additives, J. Anal. Appl. Pyrolysis, 89, 225-232 (2010). crossref(new window)

C. D. Doyle, Estimating thermal stability of experimental polymers by empirical thermogravimetric analysis, Anal. Chem., 33, 77-79 (1961). crossref(new window)

S. H. Park, S. G. Lee, and S. H. Kim, Thermal decomposition behavior of carbon nanotube reinforced thermotropic liquid crystalline polymers, J. Appl. Polym. Sci., 122, 2060-2070 (2011). crossref(new window)

S. E. Lee, S. Cho, and Y. S. Lee, Mechanical and thermal properties of MWCNT-reinforced epoxy nanocomposites by vacuum assisted resin transfer molding, Carbon Lett., 15, 32-37 (2014). crossref(new window)

G. Mittal, V. Dhand, K. Y. Rhee, H. J. Kim, and D. H. Jung, Carbon nanotubes synthesis using diffusion and premixed flame methods: a review, Carbon Lett., 16, 1-10 (2015). crossref(new window)

J. Y. Kim and S. H. Kim, Influence of multiwall carbon nanotube on physical properties of poly(ethylene 2,6-naphthalate) nanocomposites, J. Polym. Sci., Part B: Polym. Phys., 44, 1062-1071 (2006). crossref(new window)

P. C. Ma, J. K. Kim, and B. Z. Tang, Effects of silane functionalization on the properties of cargon nanotube/epoxy nanocomposites, Compos. Sci. Technol., 67, 2965-2972 (2007). crossref(new window)