JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Morphology and Mechanical Properties through Hydroxyapatite Powder Surface Composite
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Applied Chemistry for Engineering
  • Volume 27, Issue 3,  2016, pp.299-306
  • Publisher : The Korean Society of Industrial and Engineering Chemistry
  • DOI : 10.14478/ace.2016.1036
 Title & Authors
Morphology and Mechanical Properties through Hydroxyapatite Powder Surface Composite
Kye, Sung Bong; Park, Soo Nam;
  PDF(new window)
 Abstract
In this study, new hydroxyapatite powder surface composites were investigated for protective effects against ultraviolet rays. Hydroxyapatite (HAp) is biocompatible and does not cause nebula phenomenon on skin. We investigated the surface modification of hydroxyapatite to improve UV block and skin usage. Dimethicone, lauroyl lysine, triethoxycaprylylsilane and silica were used as coating agents for the surface modification of HAp. To prepare the composite complex of the modified surface, the dimethicone, lauroyl lysine and triethoxycaprylylsilane were prepared by a dry process, and silica by a hydrothermal synthesis method. The HAp-silica was chosen as the best composite powder when measuring its sun protection levels. We investigated the characteristics of the surface of HAp-silica by SEM, particle size analyzer and energy dispersive spectrometry (EDS). Additionally, the stability in the formulation, UV block effect, and safety in BB creams were investigated. In conclusion, HAp-silica prepared by the modification of HAp complex surface improved the skin usage and UV block effect by enhancing the white cloudy phenomenon. These results indicate that HAp-silica may be used for UV block cosmetics.
 Keywords
hydroxyapatite;biocompatible;UV block;composites;sun protection;
 Language
Korean
 Cited by
 References
1.
N. Serpone, D. Dondi, and A. Albini, Inorganic and organic UV filters: Their role and efficacy in sunscreens and suncare products, Inorg. Chim. Acta, 360, 794-802 (2007). crossref(new window)

2.
A. Shkilnyy, A. Friedrich, B. Tiersch, S. Schone, M. Fechner, J. Koetz, C.-W. Schlapfer, and A. Taubert, Poly(ethylene imine)-controlled calcium phosphate mineralization, Langmuir, 24, 2102-2109 (2008). crossref(new window)

3.
C. L. Kuo, C. L. Wang, H. H. Ko, W. S. Hwang, K. Chang, W. L. Li, H. H. Huang, Y. H. Chang, and M. C. Wang, Synthesis of zinc oxide nanocrystalline powders for cosmetic applications, Ceram. Int., 36, 693-698 (2010). crossref(new window)

4.
W. Weng and J. L. Baptista. A new synthesis of hydroxyapatite, J. Eur. Inorg. Chim. Acta, 17, 1151-1156 (1997).

5.
S. EI-Boury, C. Couteau, L. Boulande, E. Paparis, and L. J. M. Coiffard, Effect of the combination of organic and inorganic filters on the sun protection factor (SPF) determined by in vitro method, Int. J. Pharm., 340, 1-5 (2007). crossref(new window)

6.
A. Wokovich, K. Tyner, Doub W, and N. Sadrieh, Particle size determination of sunscreens formulated with various forms of titanium dioxide, Drug Dev. Ind. Pharm., 35(10), 1180-1189 (2009). crossref(new window)

7.
I. A. Siddiquey, T. Furusawa, M. Sato, and N. Suzuki, Microwave assisted silica coating and photocatalytic activities of ZnO nanoparticles, Bull. Mater. Sci., 43, 3416-3424 (2008).

8.
T. S. Pradeesh, M. C. Sunny, H. K. Varma, and P. Ramesh, Preparation of microstructured hydroxyapatite microspheres using oil in water emulsions, Bull. Mater. Sci., 28(5), 383-390 (2005). crossref(new window)

9.
F. Grasset, N. Saito, D. Li, D. Park, I. Sakaguchi, N. Ohashi, H. Haneda, T. Roisnel, S. Mornet, and E. Duguet, Surface modification of zinc oxide nanoparticlesby aminopropyltriethoxysilane, J. Alloys Compd., 360, 298-311 (2003). crossref(new window)

10.
N. Nagai and H. Hashimoto, FT-IR-ATR study of depth profile of $SiO_{2}$ ultra-thin films, Appl. Surf. Sci., 172, 307-311 (2001). crossref(new window)

11.
C. A. Commens, L. Burnett, and P. J. Snitch, A pilot study on the percutaneous absorption of microfine titanium dioxide from sunscreens, Australas. J. Dermatol., 37(4), 185-187 (2007).

12.
M. Ueda, R. Matsunaga, M. Ikeda, and M. Ogawa, Hydrothermal crystallization of TiO2 gel films on Ti substrates and formability of hydroxyapatite, Mater. Trans., 49, 1706-1709 (2008). crossref(new window)

13.
T. Kokubo, S. B. Cho, K. Nakanishi, C. Ohtsuki, T. Kitsugi, T. Yamamuro, and T. Nakamura, Dependence of bone like apatite formation on structure of silica gel, Bio-Ceramics, 7, 49-54 (1994).

14.
C. Xu, A. Green, A. Parisi, Parsons, and G. Peter, Photosensitization of the sunscreen octyl p-dimethylaminobenzoate by UVA in human melanocytes but not in keratinocytes. Photochem. Photobiol., 73, 600-604 (2001). crossref(new window)

15.
M. Guo, P. Diao, and S. Cai, Hydrothermal growth of perpendicularly oriented ZnO nanorod array film and its photoelectrochemical properties, Appl. Surf. Sci., 249, 71-75 (2005). crossref(new window)

16.
J. H. Hong, C. J. Cong, Z. G. Zhang, and K. L. Zhang, A new photoluminescence emission peak of ZnO-$SiO_{2}$ nanocomposites and its energy transfer to $Eu^{3+}$ ions, J. Phys. Chem. Solids, 68, 1359-1363 (2010).

17.
M. Takahashi, K. Tsukigi, T. Uchino, and T. Yoko, Enhanced photocurrent in thin film $TiO_{2}$ electrodes prepared by sol-gel method, Thin Solid Films, 388, 231-236 (2001). crossref(new window)