Advanced SearchSearch Tips
Effect of E-beam Radiation with Acid Drenching on Surface Properties of Pitch-based Carbon Fibers
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Applied Chemistry for Engineering
  • Volume 27, Issue 3,  2016, pp.319-324
  • Publisher : The Korean Society of Industrial and Engineering Chemistry
  • DOI : 10.14478/ace.2016.1042
 Title & Authors
Effect of E-beam Radiation with Acid Drenching on Surface Properties of Pitch-based Carbon Fibers
Jung, Min-Jung; Park, Mi-Seon; Lee, Sangmin; Lee, Young-Seak;
  PDF(new window)
In this study, pitch-based carbon fibers in the acid were radiated with an electron beam to modify their surface, and surface changes were investigated according to each treatment conditions. Nitric acid and hydrogen peroxide were used as a drenched acidic solution and an electron beam dose was set to 200 and 400 kGy. The use of nitric acid introduced more oxygen functional groups on carbon fiber surfaces than that of using hydrogen peroxide, and also introduced nitrogen functional groups into the carbon fiber surface. In addition, oxygen functional groups introduced on carbon fiber surface increased as the electron beam dose increased due to the fact that the oxidizing material can be easily formed by e-beam radiation in nitric acid than the hydrogen peroxide, and also the higher energy electron beam dose can help forming more oxidizing materials. Moreover, the generation of C
E-beam radiation;hydrogen peroxide;nitric acid;surface properties;carbon fibers;
 Cited by
S. Lim, D. Jung, S. H. Yoon, and I. Mochida, Carbon materials as catalysts, Carbon Lett., 9, 47-60 (2008). crossref(new window)

S. H. Han, H. J. Oh, and S. S. Kim, Evaluation of mechanical property of carbon fiber/polypropylene composite according to carbon fiber surface treatment, Trans. Korean Soc. Mech. Eng. A, 37, 791-796 (2013). crossref(new window)

J. S. Lee and T. J. Kang, Effect of Surface Treatment of Carbon Fiber on the Impact Property of Carbon/Carbon Composites, J. Korean Fiber Soc., 34, 884-890 (1997).

P. Hancock and R. C. Cuthbertson, The effect of fibre length and interfacial bond in glass fibre-epoxy resin composites, J. Mater. Sci., 5, 762-768 (1970). crossref(new window)

C. K. Moon, Y. S. Um, H. H. Cho, J. O. Lee, and T. W. Park, The effect of surface-treatment of fiber on the mechanical properties of carbon fiber reinforced plastics. 2: The effect of surface-treatment on the interfecial shear strength, Polym. Korea, 14, 630-637 (1990).

L. Di Landro and M. Pegoraro, Carbon fibre thermoplastic matrix adhesion, J. Mater. Sci., 22, 1980-1986 (1987). crossref(new window)

S. J. Park and B. J. Kim, Roles of acidic functional groups of carbon fiber surfaces in enhancing interfacial adhesion behavior, Mater. Sci. Eng. A-Struct. Mater., 408, 269-273 (2005). crossref(new window)

H. Yuan, C. Wang, S. Zhang, and X. Lin, Effect of surface modification on carbon fiber and its reinforced phenolic matrix composite, Appl. Surf. Sci., 259, 288-293 (2012). crossref(new window)

S. J. Park, M. K. Seo, and K. Y. Rhee, Studies on mechanical interfacial properties of oxy-fluorinated carbon fibers-reinforced composites, Mater. Sci. Eng. A-Struct. Mater., 356, 219-226 (2003). crossref(new window)

M. Delamar, G. Desarmot, O. Fagebaume, R. Hitmi, J. Pinsonc, and J. M. Saveant, Modification of carbon fiber surfaces by electrochemical reduction of aryl diazonium salts: Application to carbon epoxy composites, Carbon, 35, 801-807 (1997). crossref(new window)

J. Li, The effect of surface modification with nitric acid on the mechanical and tribological properties of carbon fiber-reinforced thermoplastic polyimide composite, Surf. Interface Anal., 41, 759-763 (2009). crossref(new window)

M. Paligova, J. Vilcakova, P. Saha, V. Kresalek, J. Stejskal, and O. Quadrat, Electromagnetic shielding of epoxy resin composites containing carbon fibers coated with polyaniline base, Physica A, 335, 421-429 (2004). crossref(new window)

C. U. Pittman Jr, G. R. He, B. Wu, and S. D. Gardner, Chemical modification of carbon fiber surfaces by nitric acid oxidation followed by reaction with tetraethylenepentamine, Carbon, 35, 317-331 (1997). crossref(new window)

J. Li, Interfacial studies on the $O_{3}$ modified carbon fiber-reinforced polyamide 6 composites Appl. Surf. Sci., 255, 2822-2824 (2008). crossref(new window)

J. Jang and H. Yang, The effect of surface treatment on the performance improvement of carbon fiber/polybenzoxazine composites, J. Mater. Sci., 35, 2297-2303 (2000). crossref(new window)

Y. Xie and P. M. A. Sherwood, X-ray photoelectron-spectroscopic studies of carbon fiber surfaces. part XII: The effect of microwave plasma treatment on pitch-based carbon fiber surfaces, Appl. Spectrosc., 44, 797-803 (1990). crossref(new window)

M. L. Sham, J. Li, P. Ma, and J. K. Kim, Cleaning and functionalization of polymer surfaces and nanoscale carbon fillers by UV/ozone treatment: A review, J. Compos. Mater., 43, 1537-1564 (2009). crossref(new window)

J. Y. Sohn, J. S. Lim, S. J. Gwon, J. H. Shin, J. H. Choi, and Y. C. Nho, A Study on the Improvement of the thermal stability of a commercial polyethylene separator for lithium secondary battery by an electron beam irradiation, Polym. Korea, 32, 598-602 (2008).

A. F. Michels, P. A. Soave, J. Nardi, P. L. G. Jardim, S. R. Teixeira, D. E. Weibel, and F. Horowitz, Adjustable, (super)hydrophobicity by e-beam deposition of nanostructured PTFE on textured silicon surfaces, J. Mater. Sci., 51, 1316-1323 (2016). crossref(new window)

H. Khan, B. Gahfoor, M. S. Mehmood, M. Ahmad, T. Yasin, and M. Ikram, Spectroscopic and sub optical band gap properties of e-beam irradiated ultra-high molecular weight polyethylene, Radiat. Phys. Chem., 117, 172-177 (2015). crossref(new window)

D. Teweldebrhan and A. A. Balandin, Modification of graphene properties due to electron-beam irradiation, Appl. Phys. Lett., 94, 013101 (2009). crossref(new window)

S. Gupta, R. J. Patel, N. Smith, R. E. Giedd, and D. Hui, Room temperature dc electrical conductivity studies of electron-beam irradiated carbon nanotubes, Diam. Relat. Mater., 16, 236-242 (2007). crossref(new window)

K. H. Kim, M. S. Park, M. J. Jung, and Y. S. Lee, Influence of textural structure by heat-treatment on electrochemical properties of pitch-based activated carbon fiber, Appl. Chem. Eng., 26, 598-603 (2015). crossref(new window)

D. R. Kauffman, D. C. Sorescu, D. P. Schofield, B. L. Allen, K. D. Jordan, and A. Star, Understanding the sensor response of metal-decorated carbon nanotubes, Nano Lett., 10, 958-963 (2010). crossref(new window)

S. H. Kim Y. J. Noh, S. N. Kwon, B. N. Kim, B. C. Lee, S. Y. Yang, C. H. Jung, and S. I. Na, Efficient modification of transparent graphene electrodes by electron beam irradiation for organic solar cells, J. Ind. Eng. Chem., 26, 210-213 (2015). crossref(new window)

D. A. Armstrong, W. L. Waltz, and A. Rauk, Carbonate radical anion - Thermochemistry, Can. J. Chem., 84, 1614-1619 (2006). crossref(new window)

I. Arslan-Alaton, A review of the effects of dye-assisting chemicals on advanced oxidation of reactive dyes in wastewater, Color. Technol., 119, 345-353 (2003). crossref(new window)

S. Karthikeyan, K. Viswanathan, R. Boopathy, P. Maharaja, and G. Sekaran, Three dimensional electro catalytic oxidation of aniline by boron doped mesoporous activated carbon, J. Ind. Eng. Chem., 21, 942-950 (2015). crossref(new window)

K. Artyushkova, S. Levendosky, P. Atanassov, and J. Fulghum, XPS structural studies of nano-composite non-platinum electrocatalysts for polymer electrolyte fuel cells, Top. Catal., 46, 263-275 (2007). crossref(new window)

M. J. Jung, E. Jeong, J. W. Lim, S. I. Lee, and Y. S. Lee, Physico-chemical surface modification of activated carbon by oxyfluorination and its electrochemical characterization, Colloids Surf. A-Physicochem. Eng. Asp., 389, 274-280 (2011). crossref(new window)

R. Franca, D. A. Mbeh, T. D. Samani, C. Tien, M. A. Mateescu, L. Yahia, and E. Sacher, The effect of ethylene oxide sterilization on the surface chemistry and in vitro cytotoxicity of several kinds of chitosan, J. Biomed. Mater. Res. B, DOI: 10.1002/jbmb.32964. crossref(new window)

I. A. Shkrob, T. W. Marin, S. D. Chemerisov, and J. F. Wishart, Radiation and radical chemistry of $NO_{3}^{-}$, $HNO_{3}$, and dialkylphosphoric acids in room-temperature ionic liquids, J. Phys. Chem. B, 115, 10927-10942 (2011). crossref(new window)

D. Georgiou, P. Melidis, A. Aivasidis, and K. Gimouhopoulos, Degradation of azo-reactive dyes by ultraviolet radiation in the presence of hydrogen peroxide, Dyes Pigm., 52, 69-78 (2002). crossref(new window)

S. J. Park, J. S. Oh, and D. H. Suh, Influence of ozone treatment of carbon fibers on GIIC of carbon fiber-reinforced composites, Appl. Chem. Eng., 14, 586-591 (2003).

K. Ma, P. Chen, B. Wang, G. Cui, and X. Xu, A study of the effect of oxygen plasma treatment on the interfacial properties of carbon fiber/epoxy composites, J. Appl. Polym. Sci., 118, 1606-1614 (2010).

T. Ramanathan, A. Bismarck, E. Schulz, and K. Subramanian, Investigation of the influence of acidic and basic surface groups on carbon fibres on the interfacial shear strength in an epoxy matrix by means of single-fibre pull-out test, Compos. Sci. Technol., 61, 599-605 (2001). crossref(new window)