Advanced SearchSearch Tips
Numerical Analysis for Impurity Effects on Diffusive-convection Flow Fields by Physical Vapor Transport under Terrestrial and Microgravity Conditions: Applications to Mercurous Chloride
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Applied Chemistry for Engineering
  • Volume 27, Issue 3,  2016, pp.335-341
  • Publisher : The Korean Society of Industrial and Engineering Chemistry
  • DOI : 10.14478/ace.2016.1028
 Title & Authors
Numerical Analysis for Impurity Effects on Diffusive-convection Flow Fields by Physical Vapor Transport under Terrestrial and Microgravity Conditions: Applications to Mercurous Chloride
Kim, Geug Tae; Kwon, Moo Hyun;
  PDF(new window)
In this study, impurity effects on diffusive-convection flow fields by physical vapor transport under terrestrial and microgravity conditions were numerically analyzed for the mixture of system. The numerical analysis provides the essence of diffusive-convection flow as well as heat and mass transfer in the vapor phase during the physical vapor transport through velocity vector flow fields, streamlines, temperature, and concentration profiles. The total molar fluxes at the crystal regions were found to be much more sensitive to both the gravitational acceleration and the partial pressure of component as an impurity. Our results showed that the solutal effect tended to stabilize the diffusive-convection flow with increasing the partial pressure of component . Under microgravity conditions below , the flow fields showed a one-dimensional parabolic flow structure indicating a diffusion-dominant mode. In other words, at the gravitational levels less than , the effects of convection would be negligible.
microgravity;crystal growth;
 Cited by
K. W. Benz and P. Dold, Crystal growth under microgravity: present results and future prospects towards the international space station, J. Cryst. Growth, 237-239, 1638-1645 (2002). crossref(new window)

P. Fontana, J. Schefer, and D. Pettit, Characterization of sodium chloride crystals grown in microgravity, J. Cryst. Growth, 324, 207-211 (2011). crossref(new window)

M. Nobeoka, Y. Takagi, Y. Okano, Y. Hayakawa, and S. Dost, Numerical simulation of InGaSb crystal growth by temperature gradient method under normal- and micro-gravity fields, J. Cryst. Growth, 385, 66-71 (2014). crossref(new window)

K. Kinoshita, Y. Arai, Y. Inatomi, T. Tsukada, S. Adachi, H. Miyata, R. Tanaka, J. Yoshikawa, T. Kihara, H. Tomioka, H. Shibayama, Y. Kubota, Y. Warashina, Y. Sasaki, Y. Ishizuka, Y. Harada, S. Wada, T. Ito, M. Takayanagi, and S. Yoda, Growth of a $Si_{0.50}Ge_{0.50}$ crystal by the traveling liquids-zone (TLZ) method in microgravity, J. Cryst. Growth, 388, 12-16 (2014). crossref(new window)

K. Abe, S. Sumioka, K.-I. Sugioka, M. Kubo, T. Tsukada, K. Kinoshita, Y. Arai, and Y. Inatomi, Numerical simulation of SiGe crystal growth by the traveling llquidus-zone method in a microgravity environment, J. Cryst. Growth, 402, 71-77 (2014). crossref(new window)

C. Stelian and T. Duffar, Influence of rotating magnetic fields on THM growth of CdZnTe crystals under microgravity and ground conditions, J. Cryst. Growth, 429, 19-26 (2015). crossref(new window)

Z. Li, J. H. Peterson, A. Yeckel, and J. J. Derby, Analysis of the effects of a rotating magnetic field on the growth of cadmium zinc telluride by the traveling heater method under microgravity conditions, J. Cryst. Growth, Doi: 10.1016/j.jcrysgro.2015.12.046. crossref(new window)

W. M. B. Duval, N. B. Singh, and M. E. Glicksman, Physical vapor transport of mercurous chloride crystals: design of a microgravity experiment, J. Cryst. Growth, 174, 120-129 (1997). crossref(new window)

E. N. Kolesnikova, Yu. A. Polovko, V. S. Yuferev, and A. I. Zhmakin, Influence of coriolis force on thermal convection and impurity segregation during crystal growth under microgravity, J. Cryst. Growth, 180, 578-586 (1997). crossref(new window)

F. Otalora and J. M. Garcia-Ruiz, Crystal growth studies in microgravity with the APCF I. Computer simulation of transport dynamics, J. Cryst. Growth, 182, 141-154 (1997). crossref(new window)

J. M. Garcia-Ruiz and F. Otalora, Crystal growth studies in microgravity with the APCF II. Image analysis studies, J. Cryst. Growth, 182, 155-167 (1997). crossref(new window)

C. W. Lan and C. Y. Tu, Three-dimensional analysis of flow and segregation control by slow rotation for Bridgman crystal growth in microgravity, J. Cryst. Growth, 237, 1881-1885 (2002).

S. Maruyama, K. Ohno, A. Komiya, and S. Sakai, Description of the adhesive crystal growth under normal and micro-gravity conditions employing experimental and numerical approaches, J. Cryst. Growth, 245, 278-288 (2002). crossref(new window)

M. Catauro, F. Bollino, and F. Papale, Response of SAOS-2 cells to simulated microgravity and effect of biocompatible sol-gel hybrid coatings, Acta Astronaut., 122, 237-242 (2016). crossref(new window)

K. Harth, T. Trittel, K. May, S. Wegner, and R. Stannarius, Three-dimensional (3D) experimental realization and observation of a granular gas in microgravity, Adv. Space Res., 55, 1901-1912 (2015). crossref(new window)

K. Nishino, T. Yano, H. Kawamura, S. Matsumoto, I. Ueno, and M. K. Ermakov, Instability of thermocapillary convection in long liquid bridges of high Prandtl number fluids in microgravity, J. Cryst. Growth, 420, 57-63 (2015). crossref(new window)

Y. Yang, L. M. Pan, and J.-J. Xu, Effects of microgravity on Marangoni convection and growth characteristic of a single bubble, Acta Astronaut., 100, 129-139 (2014). crossref(new window)

D. E. Melinikov, V. Shevtsova, T. Yano, and K. Nishino, Modeling of the experiments on the Marangoni convection in liquid bridges in weightlessness for a wide range of aspect ratios, Int. J. Heat Mass Transf., 87, 119-127 (2015). crossref(new window)

C. Konishi and I. Mudawar, Review of flow boiling and critical heat flux in microgravity, Int. J. Heat Mass Transf., 80, 469-493 (2015). crossref(new window)

L. Carotenuto, Crystal growth from the vapour phase in microgravity, Prog. Cryst. Growth Charact. Mater., 48/49, 166-188 (2004). crossref(new window)

A. Yeckel and J. J. Derby, Dynamics of three-dimensional convection in microgravity crystal growth: G-jitter with steady magnetic fields, J. Cryst. Growth, 263, 40-52 (2004). crossref(new window)

Z. Zeng, H. Mizuseki, K. Simamura, T. Fukuda, K. Higashino, and Y. Kawazoe, Three-dimensional oscillatory thermocapillary convection in liquid bridge under microgravity, Int. J. Heat Mass Transf., 44, 3765-3774 (2001). crossref(new window)

T. Maekawa, Y. Hiraoka, K. Ikegami, and S. Matsumoto, Numerical modelling and analysis of binary compound semiconductor growth under microgravity conditions, J. Cryst. Growth, 229, 605-609 (2001). crossref(new window)

D. R. Liu, N. Mangelinck-Noel, C. A. Gandin, G. Zimmermann, L. Sturz, H. Nguyen-Thi, and B. Billia, Simulation of directional solidification of refined Al-7wt.% Si alloys- Comparison with benchmark microgravity experiments, Acta Mater., 93, 24-37 (2015). crossref(new window)

P. A. Tebbe, S. K. Loyalka, and W. M. B. Duval, Finite element modeling of asymmetric and transient flow fields during physical vapor transport, Finite Elem. Anal. Des., 40, 1499-1519 (2004). crossref(new window)

N. B. Singh, M. Gottlieb, G. B. Brandt, A. M. Stewart, R. Mazelsky, and M. E. Glicksman, Growth and characterization of mercurous halide crystals: mercurous bromide system, J. Cryst. Growth, 137, 155-160 (1994). crossref(new window)

Y. K. Lee and G. T. Kim, Effects of convection on physical vapor transport of $Hg_{2}Cl_{2}$ in the presence of Kr-Part I: under microgravity environments, J. Korean Cryst. Growth Cryst. Technol., 23, 20-26 (2013). crossref(new window)

G. T. Kim, Effects of aspect ratio on diffusive-convection during physical vapor transport of $Hg_{2}Cl_{2}$ with impurity of NO, Appl. Chem. Eng., 26, 746-752 (2015). crossref(new window)

G. T. Kim and M. H. Kwon, Effects of solutally dominant convection on physical vapor transport for a mixture of $Hg_{2}Br_{2}$ and $Br_{2}$ under microgravity environments, Korean Chem. Eng. Res., 52, 75-80 (2014). crossref(new window)

D. W. Greenwell, B. L. Markham, and F. Rosenberger, Numerical modeling of diffusive physical vapor transport in cylindrical Ampoules, J. Cryst. Growth, 51, 413-425 (1981). crossref(new window)

B. L. Markham, D. W. Greenwell, and F. Rosenberger, Numerical modeling of diffusive-convective physical vapor transport in cylindrical vertical ampoules, J. Cryst. Growth, 51, 426-437 (1981). crossref(new window)