JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Wearing Performance and Comfort Property of PTT/Wool/Modal Air Vortex Yarn Knitted Fabrics
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Wearing Performance and Comfort Property of PTT/Wool/Modal Air Vortex Yarn Knitted Fabrics
Kim, Hyunah;
  PDF(new window)
 Abstract
This paper investigated the applicable possibility of PTT and wool staple fibers to the air vortex system as high quality yarns for a high emotional and comfort garment. It was found that the tactile hand of vortex yarn knitted fabrics was harsher than ring and compact yarns knitted fabrics. It was observed that formability and sewability of air vortex yarn knitted fabrics seemed worse than ring and compact yarns due to low tensile and compressional resilience and high bending and shear hysteresis of air vortex yarn knitted fabrics. It revealed that wicking and drying rates of air vortex yarn knitted fabric were better than ring and compact yarns; in addition, the heat keepability of vortex yarn knitted fabric was higher than ring and compact yarns due to low thermal conductivity and max heat flow rate (). Any difference of thermal shrinkage between air vortex and ring yarn knitted fabrics was not shown, but pilling characteristic of air vortex yarn knitted fabric was superior. However, it was shown that wicking, drying, thermal property and pilling characteristics of air vortex yarn knitted fabric were superior due to air vortex yarn structure with parallel fibers in the core part and periodical and fasciated twists in the sheath part of the yarns.
 Keywords
Formability;Tactile hand;Wicking and drying rate;Thermal conductivity;Pilling;
 Language
Korean
 Cited by
 References
1.
Das, A., & Ishtiaque, S. M. (2004). Comfort characteristics of fabrics containing twist-less and hollow fibrous assemblies in weft. Journal of Textile and Apparel, Technology and Management, 3(4), 1-7.

2.
Das, A., Kothari, V. K., & Balaji, M. (2007). Studies on cotton-acrylic bulked yarns and fabrics. Part I: Yarn characteristics. Journal of the Textile Institute, 98(3), 261-267. doi:10.1080/00405000701550163 crossref(new window)

3.
Das, A., Zimniewska, M., & Mal, R. D. (2009). Studies on cotton-acrylic bulked yarns produced from different spinning technologies. Part II: Fabric characteristics. Journal of the Textile Institute, 100(5), 420-429. doi:10.1080/00405000701865009 crossref(new window)

4.
Erdumlu, N., Ozipek, B., Oztuna, A. S., & Cetinkaya, S. (2009). Investigation of vortex spun yarn properties in comparison with conventional ring and open-end rotor spun yarns. Textile Research Journal, 79(7), 585-595. doi:10.1177/0040517508093590 crossref(new window)

5.
Gordon, S. G., Horne, S. L., & Horne, F. A. (2005). The properties and structure of Murata vortex spun wool and woolblend yarns. Proceedings of the 11th International Yarns Textile Research Conference, England, 80-83.

6.
Kane, C. D., Patil, U. J., & Sudhakar, P. (2007). Studies on the influence of knit structure and stitch length on ring and compact yarn single jersey fabric properties. Textile Research Journal, 77(8), 572-582. doi:10.1177/0040517507078023 crossref(new window)

7.
Lee, D. H., Choi, K. L., Na, M. H., & Cha, H. C. (2012). Mechanical properties of PET/PTT/Rayon staple blended fabrics. Textile Science and Engineering, 49(2), 126-132. doi:10.12772/TSE.2012.49.2.126 crossref(new window)

8.
Li, Q., Brady, P. R., Hurren, C. J., & Wang, X. G. (2008). The dimensional and mechanical properties of wool/polyester fabrics made from vortex and ring-spun yarns. Journal of the Textile Institute, 99(6), 561-568. doi:10.1080/00405000701692411 crossref(new window)

9.
Mhetre, S., & Parachuru, R. (2010). The effect of fabric structure and yarn-to-yarn liquid migration on liquid transport in fabrics. The Journal of the Textile Institute, 101(7), 621-626. doi:10.1080/00405000802696469 crossref(new window)

10.
Oxenham, W. (2002). Current and future trends in yarn production. Journal of Textile and Apparel, Technology and Management, 2(2), 1-6.

11.
Ozturk, M. K., Nergis, B., & Candan, C. (2011). A study of wicking properties of cotton-acrylic yarns and knitted fabrics. Textile Research Journal, 81(3), 324-328. doi:10.1177/00 40517510383611 crossref(new window)

12.
Suzuki, Y., & Sukigara, S. (2012). Mechanical and tactile properties of plain knitted fabrics produced from rayon vortex yarns. Textile Research Journal, 83(7), 740-751. doi:10.1177/0040517512467132 crossref(new window)

13.
Sztandera, L. M., Cardello, A. V., Winterhalter, C., & Schutz, H. (2013). Identification of the most significant comfort factors for textiles from processing mechanical, handfeel, fabric construction, and perceived tactile comfort data. Textile Research Journal, 83(1), 34-43. doi:10.1177/0040517512438121 crossref(new window)

14.
Unal, P. G. (2010). Investigation of some handle properties of fabrics woven with two folded yarns of different spinning systems. Textile Research Journal, 80(19), 2007-2015. doi:10.1177/0040517510369410 crossref(new window)

15.
Yanilmaz, M., & Kalaoglu, F. (2012). Investigation of wicking, wetting, and drying properties of acrylic knitted fabrics. Textile Research Journal, 82(8), 820-831. doi:10.1177/0040517511435851 crossref(new window)

16.
Zhao, L., Hu, H., & Wang, S. H. (2011). Fuzzy-integrative judgement on end-use performance of knitted fabrics made with polytrimethylene terephthalate blended yarns. Textile Research Journal, 81(17), 1739-1747. doi:10.1177/0040517511410103 crossref(new window)