JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Potential Influence of Climate Change on Shellfish Aquaculture System in the Temperate Region
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : The Korean Journal of Malacology
  • Volume 28, Issue 3,  2012, pp.277-291
  • Publisher : The Malacological Society of Korea
  • DOI : 10.9710/kjm.2012.28.3.277
 Title & Authors
Potential Influence of Climate Change on Shellfish Aquaculture System in the Temperate Region
Jo, Qtae; Hur, Young Baek; Cho, Kee Chae; Jeon, Chang Young; Lee, Deok Chan;
  PDF(new window)
 Abstract
Aquaculture is challenged by a number of constraints with future efforts towards sustainable production. Global climate change has a potential damage to the sustainability by changing environmental surroundings unfavorably. The damaging parameters identified are water temperature, sea level, surface physical energy, precipitation, solar radiation, ocean acidification, and so on. Of them, temperature, mostly temperature elevation, occupies significant concern among marine ecologists and aquaculturists. Ocean acidification particularly draws shellfish aquaculturists' attention as it alters the marine chemistry, shifting the equilibrium towards more dissolved CO2 and hydrogen ions () and thus influencing signaling pathways on shell formation, immune system, and other biological processes. Temperature elevation by climate change is of double-sidedness: it can be an opportunistic parameter besides being a generally known damaging parameter in aquaculture. It can provide better environments for faster and longer growth for aquaculture species. It is also somehow advantageous for alleviation of aquaculture expansion pressure in a given location by opening a gate for new species and aquaculture zone expansion northward in the northern hemisphere, otherwise unavailable due to temperature limit. But in the science of climate change, the ways of influence on aquaculture are complex and ambiguous, and hence are still hard to identify and quantify. At the same time considerable parts of our knowledge on climate change effects on aquaculture are from the estimates from data of fisheries and agriculture. The consequences may be different from what they really are, particularly in the temperature region. In reality, bivalves and tunicates hung or caged in the longline system are often exposed to temperatures higher than those they encounter in nature, locally driving the farmed shellfish into an upper tolerable temperature extreme. We review recent climate change and following environment changes which can be factors or potential factors affecting shellfish aquaculture production in the temperate region.
 Keywords
Climate change;damage;benefit;shellfish aquaculture;
 Language
English
 Cited by
 References
1.
Alheit, J. and Niquen, M. (2004) Regime shifts in the Humboldt Current ecosystem. Progress in Oceanography, 60: 201-222. crossref(new window)

2.
Bamber, R.N. (2011) The effects of acidic seawater on three species of lamellibranch mollusk. Journal of Experimental Marine Biology and Ecology, 143: 181-191.

3.
Bates, B., Kundzewicz, Z.W., Wu, S. and Palutikof, J.P. (2008) Climate Change and Water. Technical Paper VI of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change Secretariat, Geneva, pp. 210.

4.
Belkin, I.M. (2009) Rapid warming of large marine ecosystems. Progress In Oceanography, 81: 207-213. crossref(new window)

5.
Bibby, R., Widdicombe, S., Parry, H., Spicer, J. and Pipe, R. (2008) Effects of ocean acidification on the immune response of the blue mussel Mytilus edulis. Aquatic Biology, 2: 67-74. crossref(new window)

6.
Both, C. and Visser, M.E. (2001) Adjustment to climate change is constrained by arrival date in a long-distance migrant bird. Nature, 411: 296-298. crossref(new window)

7.
Bradley, N.L., Leopold, A.C., Ross, J. and Huffaker, W. (1999) Phenological changes reflect climate change in Wisconsin. Proceedings of National Academy of Science U.S.A., 96: 9701-9704. crossref(new window)

8.
Brian, J.V., Beresford, N., Margiotta-Casaluci, L. and Sumpter, J.P. (2011) Preliminary data on the influence of rearing temperature on the growth and reproductive status of fathead minnows Pimephales promelas. Journal of Fish Biology, 79: 80-88. crossref(new window)

9.
Brown, J.L., Li, S.H. and Bhagabati, N. (1999) Long-term trend toward earlier breeding in an American bird: a response to global warming? Proceedings of National Academy of Science U.S.A., 96: 5565-5569. crossref(new window)

10.
Burreson, E.M. and Frizzell, L.J. (1986) The seasonal antibody response in juvenile summer flounder (Pardichthys dentatus) to the hemoflagellate Trypunoplusmu bullocki. Veterinary Immunology and Immunopathology, 12: 395-402. crossref(new window)

11.
Cairns, J., Heath, A.G. and Parker, B.C. (1975) The effects of temperature upon the toxicity of chemicals to aquatic organisms. Hydrobiologia, 47: 135-171. crossref(new window)

12.
Carere, M., Miniero, R. and Cicero, M.R. (2011) Potential effects of climate change on the chemical quality of aquatic biota. Trends in Analytical Chemistry, 30: 2011-1021.

13.
Carlton, J.T. (1996) Pattern, process, and prediction in marine invasion ecology. Biological Conservation, 78: 97-106. crossref(new window)

14.
Cerenius, L. and Söderhäll, K. (2004) The prophenoloxidase-activating system in invertebrates. Immunological Review, 198: 116-126. crossref(new window)

15.
Cerenius, L. and Söderhäll, K. (2011) Coagulation in invertebrates. Journal of Innate Immunology, 3: 3-8. crossref(new window)

16.
Chaga, O., Lignell, M. and Söderhäll, K. (1995) The haemopoietic cells of the freshwater crayfish Pacifastacus leniusculus. Animal Biology, 4: 59-70.

17.
Chu, F.L.E., (1996) Laboratory investigations of susceptibility, infectivity, and transmission of Perkinsus marinus in oysters. Journal of Shellfish Research, 15: 57-66.

18.
Clavero, M. and Garcia-Berthou, E. (2005) Invasive species are a leading cause of animal extinctions. Trends in Ecology and Evolution, 20: 110. crossref(new window)

19.
Cognie, B., Haure, J. and Barille, L. (2006) Spatial distribution in a temperate coastal ecosystem of the wild stock of the farmed oyster Crassostrea gigas (Thunberg). Aquaculture, 259: 249-259. crossref(new window)

20.
Cook, T., Folli, M., Klinck, J., Ford, S. and Miller, J. (1998) The relationship between increasing sea-surface temperature and the northward spread of Perkinsus marinus (Dermo) disease epizootics in oysters. Estuarine, Coastal and Shelf Science, 46: 587-597. crossref(new window)

21.
Cooley, S.R., Lucey, N., Kite-Powell, H. and Doney S.C., (2012) Nutrition and income from molluscs today imply vulnerability to ocean acidification tomorrow. Fish and Fisheries, 13: 182-215. crossref(new window)

22.
Devlin, R.H. and Nagahama, Y. (2002) Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture, 208: 191-364. crossref(new window)

23.
Drinkwaard, A.C. (1999) Introductions and developments of oysters in the North Sea area: a review. Helgolander Meeresuntersuchungen, 52: 301-308.

24.
Dukes, J.S. and Mooney, H. (1999) Does global change increase the success of biological invaders? Trends in Ecology and Evolution, 14: 135-139. crossref(new window)

25.
Dupont, S., Ortega-Martinez, O. and Thorndyke, M. (2010) Impact of near-future ocean acidification on echinoderms. Ecotoxicology, 19: 449-462. crossref(new window)

26.
Dutertre, M., Beninger, P.G., Barille, L., Papin, M. and Haure, J. (2010) Rising water temperatures, reproduction and recruitment of an invasive oyster, Crassostrea gigas, on the French Atlantic coast. Marine Environmental Research, 69: 1-9. crossref(new window)

27.
FAO (2009) Food and Agriculture Organization of the United Nations. The state of world Fisheries and Aquaculture 2009, FAO Fisheries and Aquaculture Department, Rome.

28.
Findlay, H.S., Burrows, M.T., Kendall, M.A., Spicer, J.I. and Widdicombe, S. (2010b) Can ocean acidification affect population dynamics of the barnacle Semibalanus balanoides at its southern range edge? Ecology, 91: 2931-2940. crossref(new window)

29.
Findlay, H.S., Kendall, M.A., Spicer, J.I. and Widdicombe, S. (2010a) Post-larval development of two intertidal barnacles at elevated $CO_{2}$ and temperature. Marine Biololgy, 157: 725-735. crossref(new window)

30.
Flegel, T.W. (2009) Review of disease transmission risks from prawn products exported for human consumption. Aquaculture, 290: 179-189. crossref(new window)

31.
Frank, K.T., Petrie, B., Choi, J.S. and Leggete, W.C. (2005) Trophic cascades in a formerly cod-dominated ecosystem. Science, 308: 1621-1623. crossref(new window)

32.
Gadomski, D.M. and Caddell, S.M. (1991) Effects of temperature on early-life-history stages of California halibut Paralichthys californicus. Fishery Bulletin, 89: 567-576.

33.
Goulletquer, P. (1995) Cycle de reproduction naturelle de l'huitre creuse Crassostrea gigas. Groupe de travail sur la Reproduction des Mollusques Bivalves d'Aquaculture Marine, IFREMER, Nantes, France.

34.
Gourgou, E., Aggeli, I.K., Beis, I. and Gaitanaki, C. (2010) Hyperthermia-induced Hsp70 and MT20 transcriptional upregulation are mediated by p38-MAPK and JNKs in Mytilus galloprovincialis (Lamarck); a pro-survival response. Journal of Experimental Biology, 213: 347-357. crossref(new window)

35.
Green, T.R., Taniguchi, M., Kooi, H., Gurdak, J.J., Allen, D.M., Hiscock, K.M., Treidel, H. and Aureli, A. (2011) Beneath the surface of global change: Impacts of climate change on groundwater. Journal of Hydrology, 405: 532-560. crossref(new window)

36.
Gregory, P.J., Ingram, J.S.I. and Brklacich, M. (2005) Climate change and food security. Biological Science, 29: 2139-2148.

37.
Grigorakis, K. and Rigos, G. (2011) Aquaculture effects on environmental and public welfare - The case of Mediterranean mariculture. Chemosphere, 855: 899-919.

38.
Guo, X. and Luo, Y. (2006) Scallop culture in China. In: Scallops: Shumway S.E. and Parsons G.J. (eds). Biology, Ecology and Aquaculture. Elsevier Press, Amsterdam, the Netherlands, pp. 1143-1161.

39.
Hall-Spencer, J.M., Rodolfo-Metalpa, R., Martin, S., Ransome, E., Fine, M., Turner, S.M., et al. (2008) Volcanic carbon dioxide vents show ecosystem effects of oceanacidification. Nature, 454: 96-98. crossref(new window)

40.
Handisyde N.T., Ross L.G., Badjeck M.C., and Allison E.H. (2006) "The Effects of Climate change on World Aquaculture: A global perspective". Department for International Development, UK. http://www.aqua.stir.ac.uk/GISAP/pdfs/Climate_full.pdf

41.
Harley, C.D.G., Hughes, A.R., Hultgren, K.M., Miner, B.G., Sorte, C.J.B., Thornber, C.S., et al. (2006) The impacts of climate change in coastal marine systems. Ecology Letters, 9: 228-241. crossref(new window)

42.
Harris, L.G. and Tyrrell, M.C. (2001) Changing community states in the Gulf of Maine: synergism between invaders, overfishing and climate change. Biological Invasions, 3: 9-21. crossref(new window)

43.
Harvell, D., Altizer, S., Cattadori, I.M., Harrington, L. and Weil, E. (2009) Climatechange and wildlife diseases: when does the host matter the most? Ecology, 90: 912-920. crossref(new window)

44.
Hendriks, I.E., Duarte, C.M. and Alvarez, M. (2010) Vulnerability of marine biodiversity to ocean acidification: a meta-analysis. Estuarine Coastal and Shelf Science, 86: 157-164. crossref(new window)

45.
Hernroth, B., Sköld, H.N., Wiklander, K., Jutfelt, F. and Baden, S. (2012) Simulated climate change causes immune suppression and protein damage in the crustacean Nephrops norvegicus. Fish and Shellfish Immunology. (in press)

46.
Heugens, E.H.W., Jager, T., Creyghton, R., Kraak, M.H.S., Hendriks, A.J., van Straalen N.M., et al. (2003) Temperature-dependent effects of cadmium on Daphnia magna: accumulation versus sensitivity. Environmental Science and Technology, 37, 2145-2151. crossref(new window)

47.
Hjeltnes, B. and Roberts, R.J. (1993) Vibriosis. In: Bacterial diseases of fish. Inglis V, Roberts RJ and Bromage NR, eds. Blackwell Scientific Publications, Oxford, UK, pp. 109-122 (1993).

48.
Holt, R.A., Rohovec, J.S. and Fryer, J.L. (1993) Bacterial cold-water disease. In: Inglis, V., Roberts, R.J. and Bromage, N.R. (eds.). Bacterial diseases of fish. Blackwell Scientific Publications; Oxford, UK, pp. 3-23.

49.
Howe, G.E., Marking, L.L., Bills, T.D., Rach, J.J. and Mayer, F.L. Jr (1994) Effects of water temperature and pH on toxicity of terbufos, trichlorfo, 4-nitrophenol and 2,4-dinitrophenol to the amphipod Gammarus pseudolimnaeus and rainbow trout (Oncorhynchus mykiss). Environmental Toxicology and Chemistry, 13: 51-66. crossref(new window)

50.
Hrubec, T.C., Robertson, J.L., Smith, S.A. and Tinker, M.K. (1996) The effect of temperature and water quality on antibody response to Aeromonas salmonicida in sunshine bass (Morone chrysops x Morone saxatilis). Veterinary Immunology and Immunopathology, 50: 157-166. crossref(new window)

51.
Imsland, A.K., Sunde, L.M., Folkvord, A. and Stefansson, S.O. (1996) The interaction between temperature and size on growth of juvenile turbot. Journal of Fish Biology, 49: 926-940. crossref(new window)

52.
IPCC, (2007) Climate Change 2007: The Physical Science Basis. In: Qin, S. Manning, D., Chen, M., Marquis, M. and Averyt, K. (eds.). Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Solomon Cambridge Univ. Press, Cambridge, UK, pp. 433-497.

53.
Jiravanichpaisal, P., Soderhall, K. and Soderhall, I. (2004) Effect of water temperature on the immune response and infectivity pattern of white spot syndrome virus (WSSV) in freshwater crayfish. Fish and Shellfish Immunology, 17: 265-275. crossref(new window)

54.
Jo, Q., Kim, S.K., Lee, C., Gong, Y.G., Rahman, M.M., Kim, D.K., Lee, J.S. and Park, K.J. (2008) Survival and growth performance of the Japanese scallop Patinopecten yessoensis seeds produced in the upper tolerant temperature. World Aquaculture Society abstract, p. 295.

55.
Jonassen, T.M., Imsland, A.K. and Stefansson, S.O. (1999) The interaction of temperature and size on growth of juvenile Atlantic halibut. Journal of Fish Biology, 54: 556-572. crossref(new window)

56.
Jones, P.G. and Thornton, P.K. (2003) The potential impacts of climate change on maize production in Africa and Latin America in 2055. Global Environment Change, 13: 51-59. crossref(new window)

57.
Karvonen, A., Rintammaki, P., Jokela, J. and Valtonen, E.T. (2010) Increasing water temperature disease risks in aquatic systems: Climate change increases the risk some, but not all, diseases. International Journal of Parasitology, 40: 1483-1488. crossref(new window)

58.
Kimlu, M.K. and Eroldogan, O.T. (2004) Effects of temperature on acute toxicity of ammonia to Penaeus semisulcantus juvenile. Aquaculture, 241: 479-489. crossref(new window)

59.
Klesius, P.H. (1990) Effect of size and temperature on the quantity of immunoglobulin in channel catfish, Ictulurus punctutus. Veterinary Immunology and Immunopathology, 24: 187-195. crossref(new window)

60.
Kosaka, Y. and Ito, H. (2006) Japan. In: Shumway, S.E. and Parsons, G.J. (eds.). Scallops: Biology, Ecology and Aquaculture, Elsevier Press, Amsterdam, the Netherlands, pp. 1093-1141.

61.
Kroeker, K.J., Kordas, R.L., Crim, R.N. and Singh, G.G. (2008) Meta-analysis reveals negative yet variable effects of oceanacidification on marine organisms. Ecology Letters, 13: 1419-1434.

62.
Kroeker, K.J., Kordas, R.L., Crim, R.N. and Singh, G.G. (2010) Review and synthesis: meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecology Letters, 13: 1419-1434. crossref(new window)

63.
Kurihara, H., Kato, S. and Ishimatsu, A. (2007) Effects of increased seawater $pCO_{2}$ on early development of the oyster Crassotrea gigas. Aquatic Biology, 1: 91-98. crossref(new window)

64.
Kurihara, H. and Ishimatsu, A. (2008) Effects of high $CO_{2}$ seawater on the copepod (Acartia tsuensis) through all life stages and subsequent generations. Marine Pollution Bulletin, 56: 1086-1090. crossref(new window)

65.
Lavoie, J.N., Lambert, H., Hickey, E., Weber, L.A. and Landry, J. (1995) Modulation of cellular thermoresistance and actin filament stability accompanies phosphorylation-induced changes in the oligomeric structure of heat shock protein 27. Molecular and Cellular Biology, 15: 505-516. crossref(new window)

66.
Lehodey, P., Alheit, J., Barange, M., Baumgartner, T., Beaugrand, G., Drinkwater, K., et al. (2006) Climate variability, fish and fisheries. Journal of Climate, 19: 5009-5030. crossref(new window)

67.
Li, Q., Xu, K. and Yu, R. (2007) Genetic variation in Chinese hatchery populations of the Japanese scallop (Patinopecten yessoensis) inferred from microsatellite data. Aquaculture, 269: 211-219. crossref(new window)

68.
Liu, W. and He, M. (2012) Effects of ocean acidification on the metabolic rates of three species of bivalve from southern coast of China. Chinese Journal of Oceanography and Limnology, 30: 2006- 2016.

69.
Lorenzena, E., Einer-Jensena, K., Rasmussena, J.S., Kjæra, T.E., Collet, B., Secombesb, C.J. and Lorenzena, N. (2009) The protective mechanisms induced by a fish rhabdovirus DNA vaccine depend on temperature. Vaccine, 27: 3870-3880. crossref(new window)

70.
Luo, Y. (1991) Scallop. In: Shumway, S.E. (ed.). Scallops: Biology, Ecology and Aquaculture. Elsevier, Amsterdam, the Netherlands, pp. 809-824.

71.
Mack, R.N., Simberloff, D., Lonsdale, W.M., Evans, H., Clout, M. and Bazzaz, F.A. (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecological Applications, 10: 689-710. crossref(new window)

72.
Marcos-López, M., Gale, P., Oidtmann, B.C. and Peeler, E.J. (2010) Assessing the impact of climate change on disease emergence in freshwater fish in the United Kingdom. Transboundary and Emerging Diseases, 57: 293-304. crossref(new window)

73.
Martin, S., Rodolfo-Metalpa, R., Ransome, E., Rowley, S., Buia, M.C., Gattuso, J.-P., et al.(2008) Effects of naturally acidified seawater on seagrass calcareous epibionts. Biological letters, 4: 689-692. crossref(new window)

74.
Martinez-Urtaza, J., Lozano-Leon, A., Varela-Pet, J., Trinanes, J., Pazos, Y. and Garcia-Martin, O. (2008) Environmental determinants of the occurrence and distribution of Vibrio parahaemolyticus in the rias of Galicia, Spain. Applied and Environmental Microbiology, 74: 265-274. crossref(new window)

75.
Matozzo, V. and Marin, M.G. (2011) Bivalve immune responses and climatechanges: is there a relationship? Information System Journal, 8: 70-77.

76.
Mazaris, A.D., Kallimanis, A.S., Sgardelis, S.P. and Pantis, J.D. (2008) Do long-term changes in sea surface temperature at the breeding areas affect the breeding dates and reproduction performance of Mediterranean loggerhead turtles? Implications for climate change. Journal of Experimental Marine Biology and Ecology, 367: 219-226. crossref(new window)

77.
McCauley, R. and Beitinger, T. (1992) Predicted effects of climate warming on the commercial culture of the channel catfish. Ictalurus punctatus. Geojournal, 28: 61-66. crossref(new window)

78.
McCauley, R.W. and Huggins, N.W. (1979) Ontogenetic and non-thermal seasonal effects on thermal preferenda of fish. American Zoologist, 19, 267-271. crossref(new window)

79.
Moehler, J., Wegner, K.M., Reise, K. and Jacobsen, S. (2011) Invasion genetics of Pacific oyster Crassostrea gigas shaped by aquaculture stocking practices. Journal of Sea Research, 66: 256-262. crossref(new window)

80.
NAS (2008) Understanding and Responding to climate change. 2008 Report of United States National Academy of Sciences. http://americasclimatechoices.org/climate_change_2008_final.pdf.

81.
NFRDI (2006) The Final Report of Fisheries Studies for Research Evaluation (Fisheries Life Sciences: Aquaculture Sciences), NFRDI, Korea, pp. 105-155. (in Korean)

82.
Niquen, M. and Bouchon, M. (2004) Impact of El Nino events on pelagic fisheries in Peruvian waters. Deep Sea Research, 51: 563-574. crossref(new window)

83.
Occhipinti-Ambrogi, A. (2007) Global change and marine communities: Alien species and climate change. Marine Pollution Bulletin, 55: 342-352. crossref(new window)

84.
Occhipinti-Ambrogi, A. and Savini, D. (2003) Biological invasions as a component of global change in stressed marine ecosystems. Marine Pollution Bulletin, 46: 542-551. crossref(new window)

85.
Olson, S.H., Gangnon, R., Elguero, E., Durieux, L., Guegan, J.F., Foley, J.A. and Patz, J.A. (2009) Links between climate, malaria, and wetlands in the Amazon Basin. Emerging Infectious Disease, 15: 659-662. crossref(new window)

86.
Orr, J.C, Fabry, V.J, Aumont, O., Bopp, L., Doney, S.C., Feely, R.A. et al. (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature, 437: 681-686. crossref(new window)

87.
Paalvast, P. and van der Velde, G. (2011) New threats of an old enemy: the distribution of the shipworm Teredo navalis L. (Bivalvia: Teredinidae) related to climate change in the Port of Rotterdam area, the Netherlands. Marine Pollution Bulletin, 62: 1822-1829. crossref(new window)

88.
Pansch, C., Nasrolahi, A., Appelhans, Y.S. and Wahl, M. (2012) Impacts of ocean warming and acidification on the larval development of the barnacle Amphibalanus improvises. Journal of Experimental Marine Biology and Ecology, 420-421: 48-55. crossref(new window)

89.
Parmesan, C. (2006) Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 37: 637-669. crossref(new window)

90.
Patz, J.A.D., Campbell-Lendrum, T., Holloway, J. and Foley, A. (2005) Impact of regional climate change on human health. Nature, 438: 310-317. crossref(new window)

91.
Pedersen, T. and Jobling, M. (1989) Growth rates of large, sexually mature cod, Gadus morhua, in relation to condition and temperature during an annual cycle. Aquaculture, 81: 161-168. crossref(new window)

92.
Perez-Casanova, J.C., Rise, M.L., Dixon, B., Afonso, L.O.B., Hall, J.R., Johnson, S.C. and Gamperl, A.K. (2008) The immune and stress responses of Atlantic cod to long-term increases in water temperature. Fish and Shellfish Immunology, 24: 600-609. crossref(new window)

93.
Perry, A.L., Low, P.J., Ellis, J.R. and Reynolds, J.D. (2005) Climate change and distribution shifts in marine fishes. Science, 308: 1912-1915. crossref(new window)

94.
Range, P., Chícharo, M.A., Ben-Hamadou, R., Piló, D., Matias, D., Joaquim, S., Oliveira, AP. and Chícharo, L. (2011) Calcification, growth and mortality of juvenile clams Ruditapes decussatus under increased $pCO_{2}$ and reduced pH: Variable responses to ocean acidification at local scales? Journal of Experimental and Marine Biology and Ecology, 396: 177-184. crossref(new window)

95.
Range, P., Piló, D., Ben-Hamadou, R., Chícharo, M.A., Matias, D., Joaquim, S., Oliveira, A.P. and Chícharo, L. (2012) Seawater acidification by $CO_{2}$ in a coastal lagoon environment: Effects on life history traits of juvenile mussels Mytilus galloprovincialis. Journal of Experimental Marine Biology and Ecology, 144: 89-98.

96.
Richardson, A. and Poloczanska, E. (2008) OCEAN SCIENCE: under-resourced, under threat. Science, 320: 1294-1295. crossref(new window)

97.
Ries, J.B., Cohen, A.L., and McCorkle, D.C. (2009) Marine calcifiers exhibit mixed responses to $CO_{2}$-induced ocean acidification. Geology, 37: 1131-1134. crossref(new window)

98.
Rius, M., Heasman, K.G. and McQuaid, C.D. (2011) Long-term coexistence of non-indigenous species in aquaculture facilities. Marine Pollution Bulletin, 62: 2395-2403. crossref(new window)

99.
Root, T.L., Price, J.T., Hall, K.R., Schneider, S.H., Rosenzweig, C. and Pounds, J.A. (2003) Fingerprints of global warming on wild animals and plants. Nature, 421: 57-60. crossref(new window)