JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Identification, sequence characterization and expression analysis of the arginine kinase gene in response to laminarin challenge from the Oriental land snail, Nesiohelix samarangae
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : The Korean Journal of Malacology
  • Volume 29, Issue 3,  2013, pp.171-179
  • Publisher : The Malacological Society of Korea
  • DOI : 10.9710/kjm.2013.29.3.171
 Title & Authors
Identification, sequence characterization and expression analysis of the arginine kinase gene in response to laminarin challenge from the Oriental land snail, Nesiohelix samarangae
Jeong, Ji Eun; Lee, Yong Seok;
  PDF(new window)
 Abstract
Arginine kinase (ArK) is known to play an important role in most invertebrates the level of ATP by phosphorylation of phosphagens in cell and immuninty in living organisms. ArK has been identified in many kinds of organisms ranging from invertebrate to vertebrate. However, no ArK gene has been cloned and investigated from N. samarangae. This leads us to identify ArK cDNA (NsArK) from the expressed sequence tag (EST) sequencing of N. samarangae. Sequence analysis indicated that the coding region of 1,065 bp contains 355 amino acid residues. Molecular phylogenetic analysis shows that NsArK had very high similarities with mollusca and arthropoda. In an attempt to investigate a potential role of NsArK in the digestive gland of N. samarangae, expression patterns were analyzed. RT-PCR analsysis shows that NsArK mRNA is induced in the rane of 1.2 fold at 6 hr by laminarin when compared with the control. The immunnologial and physiological role of NsArK remains to be further investigated in N. samarangae.
 Keywords
cloning;arginine kinase;Nesiohelix samarangae;laminarin;
 Language
Korean
 Cited by
1.
동양달팽이 (Nesiohelix samarangae) 의 expressed sequence tags (ESTs) 로부터 분리한 2종류의 Serpin 유전자 분석,박소영;정지은;황희주;왕태훈;박은비;김용민;이준상;한연수;양승하;이용석;

한국패류학회지, 2014. vol.30. 2, pp.155-163 crossref(new window)
2.
참전복(Haliotis discus hannai)에서 분리한 peroxiredoxin 2 유전자의 분자생물학적 고찰 및 발현분석,문지영;박은희;공희정;김영옥;김동균;안철민;남보혜;

생명과학회지, 2014. vol.24. 12, pp.1291-1300 crossref(new window)
3.
북방전복 (Haliotis discus hannai)에서 분리한 Glutathione S-transferase 유전자의 분자생물학적 고찰 및 발현분석,문지영;박은희;공희정;김동균;김영옥;김우진;안철민;남보혜;

한국패류학회지, 2014. vol.30. 4, pp.399-408 crossref(new window)
4.
북방전복 (Haliotis discus hannai) 에서 분리한 Toll-like receptor 2/6 유전자의 분자생물학적 특성 및 발현분석,문지영;박은희;공희정;김영옥;김동균;안철민;남보혜;

한국패류학회지, 2015. vol.31. 3, pp.233-241 crossref(new window)
1.
Identification and in silico analysis of two types of serpin genes from expressed sequence tags (ESTs) of the Oriental land snail, Nesiohelix samarangae, The Korean Journal of Malacology, 2014, 30, 2, 155  crossref(new windwow)
 References
1.
Adams, R.J., Ewing, J., Dujovny, M., and Misra, M. (1998) Editorial commentary. J. Stroke Cerebrovasc Dis., 7: I-IV. crossref(new window)

2.
Bettencourt, R., Dando, P., Collins, P., Costa, V., Allam, B., and Serrao Santos, R. (2009) Innate immunity in the deep sea hydrothermal vent mussel Bathymodiolus azoricus. Comp. Biochem. Physiol. A. Mol. Integr. Physiol., 152: 278-289. crossref(new window)

3.
Biswas, C., and Mandal, C. (1999) The role of amoebocytes in endotoxin-mediated coagulation in the innate immunity of Achatina fulica snails. Scand. J. Immunol., 49: 131-138. crossref(new window)

4.
Bragg, J., Rajkovic, A., Anderson, C., Curtis, R., Van Houten, J., Begres, B., Naples, C., Snider, M., Fraga, D., and Singer, M. (2012) Identification and characterization of a putative arginine kinase homolog from Myxococcus xanthus required for fruiting body formation and cell differentiation. J. Bacteriol., 194: 2668-2676. crossref(new window)

5.
Braun, R.C., Pedretti, K.T., Casavant, T.L., Scheetz, T.E., Birkett, C.L., and Roberts, C.A. (2001) Parallelization of local BLAST service on workstation clusters. Future Generation Computer Systems, 17: 745-754. crossref(new window)

6.
Buermans, H.P., Ariyurek, Y., van Ommen, G., den Dunnen, J.T., and t Hoen, P.A. (2010) New methods for next generation sequencing based microRNA expression profiling. BMC Genomics, 11: 716. crossref(new window)

7.
Burge, C., and Karlin, S. (1997) Prediction of complete gene structures in human genomic DNA. J. Mol. Biol., 268: 78-94. crossref(new window)

8.
Burge, C.B., and Karlin, S. (1998) Finding the genes in genomic DNA. Curr. Opin. Struct. Biol., 8: 346-354. crossref(new window)

9.
Charlet, M., Chernysh, S., Philippe, H., Hetru, C., Hoffmann, J.A., and Bulet, P. (1996) Innate immunity. Isolation of several cysteine-rich antimicrobial peptides from the blood of a mollusc, Mytilus edulis. J. Biol. Chem., 271: 21808-21813. crossref(new window)

10.
Chistoserdovai, L. (2010) Functional metagenomics: recent advances and future challenges. Biotechnol. Genet. Eng. Rev., 26: 335-352.

11.
Coyne, V. (2011) The importance of ATP in the immune system of molluscs. Invertebrate Survival Journal, 8: 48-55.

12.
Cui, S., Zhang, D., Jiang, S., Pu, H., Hu, Y., Guo, H., Chen, M., Su, T., and Zhu, C. (2011) A macrophage migration inhibitory factor like oxidoreductase from pearl oyster Pinctada fucata involved in innate immune responses. Fish Shellfish Immunol, 31: 173-181. crossref(new window)

13.
Dumas, C., and Camonis, J. (1993) Cloning and sequence analysis of the cDNA for arginine kinase of lobster muscle. J. Biol. Chem., 268: 21599-21605.

14.
Edgar, R.C. (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics, 5: 113. crossref(new window)

15.
Edgar, R.C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res., 32: 1792-1797. crossref(new window)

16.
Ewing, B., and Green, P. (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res., 8: 186-194.

17.
Ewing, B., Hillier, L., Wendl, M.C., and Green, P. (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res., 8: 175-185. crossref(new window)

18.
Greenbaum, D., Luscombe, N.M., Jansen, R., Qian, J., and Gerstein, M. (2001) Interrelating different types of genomic data, from proteome to secretome: 'oming in on function. Genome Res., 11: 1463-1468. crossref(new window)

19.
Hegde, P.S., White, I.R., and Debouck, C. (2003) Interplay of transcriptomics and proteomics. Curr. Opin. Biotechnol, 14: 647-651. crossref(new window)

20.
Huang, X., and Madan, A. (1999) CAP3: A DNA sequence assembly program. Genome Res., 9: 868-877. crossref(new window)

21.
Ilg, T., and Werr, M. (2012) Arginine kinase of the sheep blowfly Lucilia cuprina: Gene identification and characterization of the native and recombinant enzyme. Pesticide Biochemistry and Physiology, 102: 115-123. crossref(new window)

22.
Iwanaga, S., and Lee, B.L. (2005) Recent advances in the innate immunity of invertebrate animals. J. Biochem. Mol. Biol., 38: 128-150. crossref(new window)

23.
Jarilla, B.R., and Agatsuma, T. (2010) Phosphagen kinases of parasites: unexplored chemotherapeutic targets. Korean J Parasitol, 48: 281-284. crossref(new window)

24.
Jones, D.T., Taylor, W.R., and Thornton, J.M. (1992) The rapid generation of mutation data matrices from protein sequences. Comput. Appl. Biosci., 8: 275-282.

25.
Lang, A.B., Wyss, C., and Eppenberger, H.M. (1980) Localization of arginine kinase in muscles fibres of Drosophila melanogaster. J. Muscle Res. Cell. Motil., 1: 147-161. crossref(new window)

26.
Liu, D.W. (2008) Opioid peptides and innate immune response in mollusc. Protein Pept. Lett., 15: 683-686. crossref(new window)

27.
Maeda, M., and Nishizawa, K. (1968) Fine structure of laminaran of Eisenia bicyclis. J. Biochem., 63: 199-206.

28.
McGuffin, L.J., Bryson, K., and Jones, D.T. (2000) The PSIPRED protein structure prediction server. Bioinformatics, 16: 404-405. crossref(new window)

29.
Mitta, G., Vandenbulcke, F., and Roch, P. (2000) Original involvement of antimicrobial peptides in mussel innate immunity. FEBS. Lett., 486: 185-190. crossref(new window)

30.
Newsholme, E.A., Beis, I., Leech, A.R., and Zammit, V.A. (1978) The role of creatine kinase and arginine kinase in muscle. Biochem. J., 172: 533-537.

31.
Reddy, S.R., Roustan, C., and Benyamin, Y. (1991) Purification and properties of two molecular forms of arginine kinase from the adductor muscle of the scallop, Pecten maximus. Comp. Biochem. Physiol. B., 99: 387-394. crossref(new window)

32.
Reddy, S.R., Houmeida, A., Benyamin, Y., and Roustan, C. (1992) Interaction in vitro of scallop muscle arginine kinase with filamentous actin. Eur. J. Biochem., 206: 251-257. crossref(new window)

33.
Rice, P., Longden, I., and Bleasby, A. (2000) EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet., 16: 276-277. crossref(new window)

34.
Supajatura, V., Ushio, H., Nakao, A., Akira, S., Okumura, K., Ra, C., and Ogawa, H. (2002) Differential responses of mast cell Toll-like receptors 2 and 4 in allergy and innate immunity. J. Clin. Invest., 109: 1351-1359. crossref(new window)

35.
Suzuki, T., and Furukohri, T. (1994) Evolution of phosphagen kinase. Primary structure of glycocyamine kinase and arginine kinase from invertebrates. J. Mol. Biol., 237: 353-357. crossref(new window)

36.
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol., 28: 2731-2739. crossref(new window)

37.
Wang, Z., Jian, J., Lu, Y., Wang, B., and Wu, Z. (2011) A tandem-repeat galectin involved in innate immune response of the pearl oyster Pinctada fucata. Mar. Genomics, 4: 229-236. crossref(new window)

38.
Yu, Z., He, X., Fu, D., and Zhang, Y. (2011) Two superoxide dismutase (SOD) with different subcellular localizations involved in innate immunity in Crassostrea hongkongensis. Fish Shellfish Immunol., 31: 533-539. crossref(new window)

39.
Zhang, H., Wang, L., Song, L., Song, X., Wang, B., Mu, C., and Zhang, Y. (2009) A fibrinogen-related protein from bay scallop Argopecten irradians involved in innate immunity as pattern recognition receptor. Fish Shellfish Immunol., 26: 56-64. crossref(new window)