JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Identification and in silico analysis of two types of serpin genes from expressed sequence tags (ESTs) of the Oriental land snail, Nesiohelix samarangae
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : The Korean Journal of Malacology
  • Volume 30, Issue 2,  2014, pp.155-163
  • Publisher : The Malacological Society of Korea
  • DOI : 10.9710/kjm.2014.30.2.155
 Title & Authors
Identification and in silico analysis of two types of serpin genes from expressed sequence tags (ESTs) of the Oriental land snail, Nesiohelix samarangae
Park, So Young; Jeong, Ji Eun; Hwang, Hee Ju; Wang, Tae Hun; Park, Eun Bi; Kim, Yong Min; Lee, Jun-Sang; Han, Yeon Soo; Yang, Seung-Ha; Lee, Yong Seok;
  PDF(new window)
 Abstract
Serpins are a group of proteins involved in the regulation of serine and other type of proteases, and have been identified in many kinds of organisms from invertebrates to vertebrates. Serpins are known to regulate the proteolytic cascades of the innate immune pathways in addition to their roles in blood coagulation, angiogenesis, fibrinolysis, inflammation and tumor suppression. In this study, we have isolated two partial serpin gene fragments from expressed sequence tags (ESTs) of Nesiohelix samarangae. Dotplot analysis indicates that they are of two different types, Ns-serpin type 1 and Ns-serpin type 2. Ns-serpin type 1 has 819 bp coding region (272 amino acids), whereas Ns-serpin type 2 has 555 bp coding region (185 amino acids). Molecular phylogenetic analysis shows that the identified serpins have high similarities to their counterparts in the California see slug, Aplysia californica. Yet, the precise biological and immunological roles of these Ns-serpins remain to be further investigated using RNA interference and other molecular techniques.
 Keywords
Nesiohelix samarangae;EST;laminarin;serpin;
 Language
Korean
 Cited by
1.
동양달팽이 (Nesiohelix samarangae)의 CO-I 유전자를 이용한 분자계통학적 연구,방인석;이용석;

한국패류학회지, 2014. vol.30. 4, pp.391-397 crossref(new window)
1.
Molecular Phylogenetic Study of Nesiohelix samarangae Based on CO-I Gene, The Korean Journal of Malacology, 2014, 30, 4, 391  crossref(new windwow)
 References
1.
Armstrong, P. B. (2001) "The contribution of proteinase inhibitors to immune defense." Trends Immunol., 22(1): 47-52. crossref(new window)

2.
Braun, R. C., K. T. Pedretti, T. L. Casavant, T. E. Scheetz, C. L. Birkett and C. A. Roberts (2001) "Parallelization of local BLAST service on workstation clusters." Future Generation Computer Systems, 17: 745-754. crossref(new window)

3.
Coyne, V. (2011) "The importance of ATP in the immune system of molluscs." Invertebrate Survival Journal, 8: 48-55.

4.
Cui, S., D. Zhang, S. Jiang, H. Pu, Y. Hu, H. Guo, M. Chen, T. Su and C. Zhu (2011) "A macrophage migration inhibitory factor like oxidoreductase from pearl oyster Pinctada fucata involved in innate immune responses." Fish Shellfish Immunol., 31(2): 173-181. crossref(new window)

5.
Edgar, R. C. (2004) "MUSCLE: a multiple sequence alignment method with reduced time and space complexity." BMC Bioinformatics, 5: 113. crossref(new window)

6.
Edgar, R. C. (2004) "MUSCLE; multiple sequence alignment with high accuracy and high throughput." Nucleic Acids Res., 32: 1792-1797. crossref(new window)

7.
Gatto, M., L. Iaccarino, A. Ghirardello, N. Bassi, P. Pontisso, L. Punzi, Y. Shoenfeld and A. Doria (2013) "Serpins, immunity and autoimmunity: old molecules, new functions." Clin. Rev. Allergy Immunol., 45(2): 267-280. crossref(new window)

8.
Jeffroy, F., F. Brulle and C. Paillard (2013) "Differential expression of genes involved in immunity and biomineralization during Brown Ring Disease development and shell repair in the Manila clam, Ruditapes philippinarum." J. Invertebr Pathol., 113(2): 129-136. crossref(new window)

9.
Jeong, J. E. and Y. S. Lee (2013) "Identification, sequence characterization and expression analysis of the arginine kinase gene in response to laminarin challenge from the Oriental land snail, Nesiohelix samarangae." Korean Journal of Malacology, 29(3): 171-179. crossref(new window)

10.
Jones, D. T., W. R. Taylor and J. M. Thornton (1992) "The rapid generation of mutation data matrices from protein sequences." Comput Appl. Biosci., 8(3): 275-282.

11.
Kanost, M. R. (1999) "Serine proteinase inhibitors in arthropod immunity." Developmental and Comparative Immunology, 23: 291-301. crossref(new window)

12.
Maeda, M. and K. Nishizawa (1968) "Fine structure of laminaran of Eisenia bicyclis." J. Biochem., 63(2): 199-206. crossref(new window)

13.
Maldonado-Aguayo, W., G. Nunez-Acuna, V. Valenzuela-Munoz, J. Chavez-Mardones and C. Gallardo-Escarate (2013) "Molecular characterization of two kazal-type serine proteinase inhibitor genes in the surf clam Mesodesma donacium exposed to Vibrio anguillarum." Fish Shellfish Immunol., 34(6): 1448-1454. crossref(new window)

14.
Miura, Y., S. Kawabata, Y. Wakamiya, T. Nakamura and S. Iwanaga (1995) "A limulus intracellular coagulation inhibitor type 2. Purification, characterization, cDNA cloning, and tissue localization." J. Biol. Chem., 270(2): 558-565. crossref(new window)

15.
c(2006) "An overview of the serpin superfamily." Genome Biology, 7.

16.
Sadaaki Iwanaga and B. L. Lee (2005) "Recent advances in the innate immunity of invertebrate animals." Journal of Biochemistry and Molecular Biology, 38(2): 128-150 crossref(new window)

17.
Silverman, G. A., P. I. Bird, R. W. Carrell, F. C. Church, P. B. Coughlin, P. G. Gettins, J. A. Irving, D. A. Lomas, C. J. Luke, R. W. Moyer, P. A. Pemberton, E. Remold-O'Donnell, G. S. Salvesen, J. Travis and J. C. Whisstock (2001) "The serpins are an expanding superfamily of structurally similar but functionally diverse proteins. Evolution, mechanism of inhibition, novel functions, and a revised nomenclature." J. Biol. Chem., 276(36): 33293-33296. crossref(new window)

18.
Supajatura, V., H. Ushio, A. Nakao, S. Akira, K. Okumura, C. Ra and H. Ogawa (2002) "Differential responses of mast cell Toll-like receptors 2 and 4 in allergy and innate immunity." J. Clin. Invest., 109(10): 1351-1359. crossref(new window)

19.
Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei and S. Kumar (2011) "MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods." Mol. Biol. Evol., 28(10): 2731-2739. crossref(new window)

20.
Tamura, K., G. Stecher, D. Peterson, A. Filipski and S. Kumar (2013) "MEGA6: Molecular Evolutionary Genetics Analysis version 6.0." Mol. Biol. Evol., 30(12): 2725-2729. crossref(new window)

21.
Tirloni, L., A. Seixas, A. Mulenga, S. Vaz Ida, Jr. and C. Termignoni (2014) "A family of serine protease inhibitors (serpins) in the cattle tick Rhipicephalus (Boophilus) microplus." Exp. Parasitol., 137: 25-34. crossref(new window)

22.
Wang, Z., J. Jian, Y. Lu, B. Wang and Z. Wu (2011) "A tandem-repeat galectin involved in innate immune response of the pearl oyster Pinctada fucata." Mar. Genomics, 4(3): 229-236. crossref(new window)

23.
Wei, X., J. Yang, J. Yang, X. Liu, M. Liu, D. Yang, J. Xu and X. Hu (2012) "A four-domain Kunitz-type proteinase inhibitor from Solen grandis is implicated in immune response." Fish Shellfish Immunol., 33(6): 1276-1284. crossref(new window)

24.
Yu, Z., X. He, D. Fu and Y. Zhang (2011) "Two superoxide dismutase (SOD) with different subcellular localizations involved in innate immunity in Crassostrea hongkongensis." Fish Shellfish Immunol., 31(4): 533-539. crossref(new window)

25.
Zhang, H., L. Wang, L. Song, X. Song, B. Wang, C. Mu and Y. Zhang (2009) "A fibrinogen-related protein from bay scallop Argopecten irradians involved in innate immunity as pattern recognition receptor." Fish Shellfish Immunol., 26(1): 56-64. crossref(new window)