Advanced SearchSearch Tips
Flexible Piezoelectric Nanocomposite Generator Devices based on BaTiO3 Dendrite Nanostructure
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Flexible Piezoelectric Nanocomposite Generator Devices based on BaTiO3 Dendrite Nanostructure
Bae, Soo Bin;
  PDF(new window)
In this paper, the flexible piezoelectric nanocomposite generator(NCG) device based on nanostructures was fabricated via simple and low-cost spin coating method. The nanostructures synthesized by self-assembly reaction showed dendrite morphologies. To produce the piezoelectric nanocomposite(p-NC layer) which acts as an electric energy source in NCG device, the piezoelectric nanopowders() were dispersed in polydimethylsiloxane(PDMS). Sequently, the p-NC layer was inserted in two dielectric layer of PDMS; these layers enabled the NCG device flexibility as well as durability prohibiting detachment(exfoliation) for significantly mechanical bending motions. The fabricated NCG device shows average maximum open circuit voltage of 6.2 V and average maximum current signals of 300 nA at 20 wt% composition of nanostructures in p-NC layer. Finally, the flexible energy harvester generates stable output signals at any rate of frequency which were used to operate LCD device without any external energy supply.
Energy harvesting;Flexible nano-generator;Piezoelectric;;
 Cited by
G. J. Aubrecht, "Energy: Physical, Environmental, and Social Impac," Pearson Education, London, 3rd edn., pp. 2-15, 2006.

S. Priya and D. J. Inman, "Energy Harvesting Technologies," Springer Science, New York, pp. 3-39, 2009.

R. Yang, Y. Qin, C. Li, G. Zhu and Z. L. Wang, "Converting Biomechanical Energy into Electricity by a Muscle-Movement-Driven Nanogenerator," Nano Lett., Vol. 9, No. 3, pp. 1201-1205, 2009. crossref(new window)

S. M. Kang, K. J. Park and H. S. Kim, "Circuit Component Requirements for Energy Scavenging System", Trans. KIEE, Vol. 57, No. 10, pp. 1-7, 2008.

이수진, 김상우, 함영복, "압전에너지 하베스팅 기술동향 및 전망," KISTI 분석 보고서, 2013.

Z. L. Wang and J. H. Song, "Piezoelectric Nanogenerators based on Science," Vol. 312, No. 5771, pp. 242-246. 2006. crossref(new window)

S. Xu, B. J. Hansen and Z. L. Wang, "Piezoelectric-Nanowire-Enabled Power Source for Driving Wireless Microelectronics," Nat. Commun., Vol. 1, no. 93, DOI:10.1038/mcomms 1098, 2010. crossref(new window)

A. Koka, and H. A. Sodano "High-Sensitivity Accelerometer Composed of Ultra-Long Vertically Aligned Barium Titanate Nanowire Arrays," Nat. Commun., Vol. 4, No. 2682, DOI 10.1038/ncomms 3682, 2013 crossref(new window)

K. I. Park, S. B. Bae, S. H. Yang, H. I. Lee, K. Lee and S. J. Lee, "Lead-free BaTiO3 Nanowiresbased Flexible Nanocomposite Generator," Nanoscale, Vol. 6, pp. 8962-8968, 2014. crossref(new window)

J. B. Park, B. J. Kelly, G. H. Kenner, A. F. Vonrecum, M. F. Grether, W. W. Coffeen, Piezoelectric Ceramic Implants - In vivo Results. J. Biomed. Mater. Res., Vol. 15, pp. 103-110, 1981. crossref(new window)

K. I. Park, M. B. Lee, Y. Liu, S. Moon, G. T. Hwang, G. Zhu, J. E. Kim, S. O. Kim, D. K. Kim, Z. L. Wang, and K. J. Lee "Flexible Nanocomposite Generator Made of $BaTiO_3$ Nanoparticles and Graphitic Carbons," Adv. Mater., Vol. 24, pp. 2999-3004, 2012. crossref(new window)

W. Hertl, "Kinetics of Barium Titanate Synthesis," J. Am. Ceram. Soc., Vol. 71, No. 10, pp. 879-883, 1988. crossref(new window)

N. Bao, L. Shen, G. Srinivasan, K. Yanagisawa, and A. Gupta, "Shape-Controlled Monocrystalline Ferroelectric Barium Titanate Nanostructures: From Nanotubes and Nanowires to Ordered Nanostructures," J. Phys. Chem. C, Vol. 112, No. 23, pp. 8634-8642, 2008.

Q. Feng, M. Hirasawa, and K. Yanagisawa "Synthesis of Crystal-Axis-Oriented $BaTiO_3$ and Anatase Platelike Particles by a Hydrothermal Soft Chemical Process," Chem. Mater., Vol. 13, pp. 290-296, 2001. crossref(new window)

C. K. Jeong, I. S. Kim, K. I. Park, M. H. Oh, H. M. Paik, G. T. Hwang, K. S. No, Y. S. Nam and K. J. Lee, ACS Nano, Vol. 7, No. 12, pp. 11016-11025, 2013. crossref(new window)