JOURNAL BROWSE
Search
Advanced SearchSearch Tips
MOFs for the Detection of High Explosives
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
MOFs for the Detection of High Explosives
LEE, Junwung;
  PDF(new window)
 Abstract
MOFs(Metal-Organic Frameworks) are new kinds of materials comprised of metal ions and functional organic ligands, and have large pores in its rigid structures which give the materials various functionalities, including gas absorption, separation, drug delivery etc. Recently photoluminescence properties of MOFs and possibilities of its application to high explosive sensing technologies are drawing attentions from scientists and engineers, because these methods are simple, cheap and easy to perform detection operations. In this article the author reviews the mechanisms of photoluminescence of MOFs, the detection methods of high explosives using MOFs and recent research progresses based on the papers published mainly during last 10 years.
 Keywords
MOF;Photoluminescence;Electron Transfer;Explosive Detection;Nitroaromatic Compound;
 Language
Korean
 Cited by
 References
1.
Lee, J. W., "Synthesis and Applications of MOFs," Tech. Report, KISTI, 2014.

2.
Rocha, J. et al., Chem. Soc. Rev., 40, 926, 2011. crossref(new window)

3.
Hu, Z. et al., Chem. Soc. Rev., 43, 5815, 2014. crossref(new window)

4.
Toal, S. J. and Trogler, W. C., J. Mater. Chem., 16, 2871, 2006. crossref(new window)

5.
Shustova, N. B. et al., J. Am. Chem. Soc., 133, 20126, 2011. crossref(new window)

6.
Dai, J.-C. et al., Chem. Commun., 12-13, 2002.

7.
Ni, J. et al., Dalton Trans., 41, 5280, 2012. crossref(new window)

8.
Ma, J.-X. et al., Chem. Eur. J., 19, 3590, 2013. crossref(new window)

9.
Pramanik, S. et al., J. Am. Chem. Soc., 133, 4153, 2011. crossref(new window)

10.
Shustova N. B. et al., J. Am. Chem. Soc., 135, 13326, 2013. crossref(new window)

11.
Xu, H. et al., Chem. Commun., 48, 7377, 2012 crossref(new window)

12.
Li, Y. et al., Angew. Chem. Int. Ed., 52, 710, 2013. crossref(new window)

13.
Lin, C.-K. et al., Inorg. Chem., 51, 9039, 2012. crossref(new window)

14.
Chen, B. et al., Angew. Chem. Int. Ed., 48, 500, 2009. crossref(new window)

15.
Nagarkar, S. S. et al., Angew. Chem. Int. Ed., 52, 2881, 2013. crossref(new window)

16.
Chaudhari, A. K. et al., Cryst. Growth Des., 13, 3716, 2013. crossref(new window)

17.
Hendon, C. H. et al., J. Am. Chem. Soc., 135, 10942, 2013. crossref(new window)

18.
Hu, Z. et al., Cryst. Growth Des., 13, 4204, 2013 crossref(new window)

19.
Odbadrakh, K. et al., J. Phys. Chem. C, 114, 3732, 2010. crossref(new window)

20.
Xiong, R. et al., Langmuir, 26, 5942, 2010. crossref(new window)

21.
Lan, A. et al., Inorg. Chem., 48, 7165, 2009. crossref(new window)

22.
Lan, A. et al., Angew. Chem. Int. Ed. 48, 2334, 2009. crossref(new window)

23.
Zhang, C. et al., Chem. Commun., 47, 2336, 2011. crossref(new window)

24.
Rao, D. et al., Chem. Commun., 47, 7698, 2011. crossref(new window)

25.
Banerjee, D. et al., Cryst. Growth Des., 9, 4922, 2009. crossref(new window)

26.
Abrahams, B. F. et al., Angew. Chem., Int. Ed., 49, 1087, 2010. crossref(new window)

27.
Kim, T. K. et al., Inorg. Chem., 52, 589, 2013. crossref(new window)

28.
Li, R. et al., Small, 8, 225, 2012. crossref(new window)

29.
Xu, H. et al., Chem. Commun., 47, 3153, 2011. crossref(new window)

30.
Xue, Y. S. et al., J. Mater. Chem. A, 1, 4525, 2013.