JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Polynigrogen Energetic Materials
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Polynigrogen Energetic Materials
Lee, Junwung;
  PDF(new window)
 Abstract
Current research trends of prediction of possible structures, synthesis and explosive characteristics of polynitrogen molecules(PNs) are reviewed. Theoretically PNs are composed only of nitrogen atoms, in which N-N bonds are either single or double bonds, and thus when these molecules decompose, release of enormous energy is accompanied. From the middle of 20th century energetic material chemists have been seeking possible structures and the methods of synthesis of these new materials. As a results, from to together with their ions are predicted, and experimental chemists have been trying to synthesize these materials with a few success, including the famous ion in 1999. Although experimental successes are very rare beyond until today, the author believes that renovative ideas together with sincere efforts will bring someday next generation of high energy materials such as nitrogen fullerene() in reality.
 Keywords
Polynitrogen;Energetic Materials;Prediction of Structures;Heat of Formation;Explosive Performance;
 Language
Korean
 Cited by
 References
1.
Lee, J. W., J. of the Korea Institute of Military Sci. and Tech., 6(3), 86-102, 2003.

2.
Rutherford, D., "De Aero Fixo Ant Mephitic(On Air Said to be Fixed or Mephitic)," MD thesis, University of Edinburgh, 1772.

3.
Curtius, T., Berichte Dtsch. Chem. Ges., 23, 3023-3033, 1890. crossref(new window)

4.
Christe, K. O. et al., Angew. Chemie, Int. Ed., 38(13/14), 2004-2009, 1999. crossref(new window)

5.
"Discovery of New Polynitrogen May Open Door to a New Class of Chemical Propellants," Dec 01-AFRL Horizons, http://www.hobbyspace.com/Links/

6.
Samartzis P. C. and Wodtke, A. M., Int. Rev. in Phys. Chem., 25(4), 527-52, 2006. crossref(new window)

7.
Engelke R. and Stine, J. R., J. Phys. Chem., 94, 5689-5694, 1990. crossref(new window)

8.
Manaa, M. R., Chem. Phys. Lett., 331(2-4), 262-268, 2000. crossref(new window)

9.
Thrush, B. A., Proc. Roy. Soc. London, Ser. A: Math. Phys. Sci., 235, 143-147, 1956.

10.
Martin, J. M. L., et al., J. Chem. Phys., 90(11), 469-485, 1989.

11.
Wasilewski, J., J. Chem. Phys., 105(24), 10969-10982, 1996. crossref(new window)

12.
Martin, J. M. L. et al., J. Chem. Phys., 93(6), 4485-4486 1990. crossref(new window)

13.
Zhang, P. et al., J. Chem. Phys., 122, 014106, 2005. crossref(new window)

14.
Byun, Y. G. et al., J. Am. Chem. Soc., 113, 3689-3696, 1991. crossref(new window)

15.
Tarroni, R. and Tosi, P., Chem. Phys. Lett., 389, 274-278, 2004. crossref(new window)

16.
Cai, Z. L. et al., Chem. Phys., 164, 377-381, 1992. crossref(new window)

17.
Zarko, V. E., Combustion, Explosion, and Shock Waves, 46(2), 121-131, 2010. crossref(new window)

18.
Carnovale, F. J. et al., J. Chem. Phys., 88(2), 642-650, 1988. crossref(new window)

19.
McKnight, L. G. et al., Phys. Rev., 164, 62-70, 1967. crossref(new window)

20.
Francl, M. M. and Chesick, J. P., J. Phys. Chem., 94, 526-528, 1990. crossref(new window)

21.
Bittererova, M. et al., J. Phys. Chem. A, 104(51), 11999-12005, 2005, 2000.

22.
Pyykko P. and Runeberg, N., J. Mol. Struct. Theochem., 234, 279-290, 1991. crossref(new window)

23.
Nguyen M. T. and Ha, T. K., Chem. Phys. Lett., 317, 135-141, 2000. crossref(new window)

24.
Dixon, D. A. and Christe, K. O. et al. J. Am. Chem. Soc., 126(3), 834-843, 2004. crossref(new window)

25.
Wang, X. et al., Chem. Phys. Lett., 329, 483-489, 2000. crossref(new window)

26.
Glukhovtsev, M. N., et al., Inorg. Chem., 35, 7124-7133, 19960 crossref(new window)

27.
Gagliardi, L., et al., J. Chem. Phys., 114(24), p10733, 2001. crossref(new window)

28.
Nguyen, M. T. et al., Chem. Phys. Lett., 335, 311-320, 2001. crossref(new window)

29.
Li, Q. S. and Liu, Y. D., J. Phys. Chem. A, 106, 9538-9542, 2002. crossref(new window)

30.
Engelke, R., J. Org. Chem., 96, 10789-10792, 1992.

31.
Engelke, R., J. Org. Chem., 93, 5722-5727, 1989.

32.
Michels, H. H., et al., J. Phys. Chem., 99, 187-194, 1995. crossref(new window)

33.
Liu, Y. D. et al., Theor. Chem. Acc., 107, 140-146, 2002. crossref(new window)

34.
Li, Q. S. and Zhao, J. F., J. Phys. Chem. A, 106, 5928-5931, 2002. crossref(new window)

35.
Fau, S. et al., J. Phys. Chem. A, 106(18), 4639-4644, 2002. crossref(new window)

36.
Li, S. et al., Chem. J. Chinese Univ., 18, 297-299, 1997.

37.
Wang L. J. et al., Chem. Phys. Lett., 376(5-6), 698-703, 2003. crossref(new window)

38.
Zhou, H. et al., J. Mol. Graphics Modell., 25(4), 578-583, 2006. crossref(new window)

39.
Zhou, H. et al., Chem. Phys. Lett., 449(4-6), 272-275, 2007. crossref(new window)

40.
Douglas, A. E., et al., Canadian Journal of Physics, 43(12), 2216-2221, 1965. crossref(new window)

41.
Hansen N. et al., J. Phys. Chem. A, 107, 10608, 2003.

42.
Hansen, N. et al., J. Chem. Phys., 123, 104305, 2005. crossref(new window)

43.
Zhang, J. et al., Phys. Chem. Chem. Phys., 8, 1690-1696, 2006. crossref(new window)

44.
Larson, C. et al., J. Phys. Chem., 112(6), 1105-1111, 2008. crossref(new window)

45.
Dyke, J. M. et al., Mol. Phys., 47, 1231-1240, 1982. crossref(new window)

46.
Samartzis, P. C. et al., J. Chem. Phys., 123(5), 051101, 2005. crossref(new window)

47.
Whitaker, M. et al., Phys. Rev. A, 24, 743-745, 1981. crossref(new window)

48.
Zheng, J. P. et al., Chem. Phys. Lett., 328, 227-233, 2000. crossref(new window)

49.
Cacase, F. et al., Science, 295, 480-481, 2002. crossref(new window)

50.
Renie E. E. and Mayer, P. M., J. Chem. Phys., 120(22), 10561-10578, 2004. crossref(new window)

51.
Zurer, P., Chem. Eng. News, 77(4), 7, 1999.

52.
Vij, A. and Christe, K. O. et al., Angew. Chemie, Int. Ed., 41, S. 3051-3054, 2002. crossref(new window)

53.
Bartlett, R. J., "Structure and Stability of Polynitrogen Molecules and Their Spectroscopic Characteristics," University of Florida, To be Published at 2015, http://users.clas.ufl.edu/rodbartl/pdf_files/polynitrogen%20Tobita.pdf

54.
Teter, M. et al., Science, 5271(5245), 53-55, 1996.

55.
Laniel, D et al., J. Chem. Phys., 140, 184701(1-8), 2014. crossref(new window)

56.
Klapoke, T. M, et al., "High Nitrogen Compounds for use in Low-Erosivity Gun Propellants," http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA504339.

57.
Klapotke, T. M. et al., J. Mater. Chem., 18, 5248-5258, 2008. crossref(new window)

58.
Wang, Z. et al., Journal of Energetic Materials, 32, 227-237, 2014. crossref(new window)

59.
Dippold, A., and T. M. Klapotke et al., Zeitschrift fur Anorganische und Allgemeine Chemie, 637(9), 1181-1193, 2011. crossref(new window)

60.
Qi, C. et al., J. Mater. Chem., 21, 3221-3225, 2011. crossref(new window)

61.
Katritzky, A. R. et al., J. of Org. Chem., 76(10), 4082-4087, 2011. crossref(new window)

62.
Jishkariani, D., C. et al., J. of Org. Chem., 78, 3349-3354, 2013. crossref(new window)

63.
Jishkariani, D. et al., J. Org. Chem., 77(13), 5813-5818, 2012. crossref(new window)

64.
Nimesh, S et al., Propellants Explos. Pyrotech., 40, 426-432, 2015. crossref(new window)

65.
Bennion, J. C. et al., Cryst. Growth Des., 15, 2545-2549, 2015 crossref(new window)

66.
M. Klapctke, et al., Propellants Explos. Pyrotech., 40, 366-373, 2015. crossref(new window)

67.
Fischer D. and Klapotke, T. M. et al., New J. Chem., 39, 1619-1627, 2015. crossref(new window)

68.
Rice. B. M. et al., "Computational Aspects Of Nitrogen-Rich HEDMs," High Energy Density Materials, Springer, Berlin-eidelberg, pp. 153-94 (Structure and Bonding Ser., Vol. 125), 2007.