Advanced SearchSearch Tips
Dynamic Performance of Natural Gas Injection Valve for Heavy-Duty Power Generation Engine - Part I
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Dynamic Performance of Natural Gas Injection Valve for Heavy-Duty Power Generation Engine - Part I
Choi, Young; Kim, Yong-Rae; Lee, Seok-Whan; Kim, Chang-Gi;
  PDF(new window)
Natural gas fuel has known to be very promising in terms of abundancy and economic value. Therefore it is widely treated as research topics in a variety field of production, storage and utilization. Natural gas has become one of the major sources for the power generation by using internal combustion engines(ICE). Development of natural gas fuel injection device should be preceded to realize a reliable natural gas fuel supply system for a MW class power generation reciprocating ICE. In this research, an injection valve which consists of solenoid and body part with a moving plate was designed and its dynamic performance was experimented in the engine-like environment. As a result of the experiments, linearity of flow rate was obtained and overall around 2ms of response time was observed at the pressure difference of 1bar. In addition, more than 100Liter/min(@2Hz) of gas flow rate was witnessed, which is expected to be adequate for the fuel supply system of a MW class natural gas engine.
injection valve;solenoid core;armature;pressure difference;stroke;response time;flow rate;
 Cited by
가스밸브의 안전관리 현황 및 안전성 향상 연구 (모니터링을 중심으로),최병규;차민창;김진준;

한국가스학회지, 2016. vol.20. 5, pp.57-63 crossref(new window)
Corbo, P., Gambino, M., Iannaccone, S. and Unich, A., "Comparison between lean-burn and stoichiometric technologies for CNG heavy-duty engines", SAE Paper, No.950057, (1995)

Lee, S.Y., Huh, K. Y., Kim, Y. M. and Lee, J. H., "Analysis of in-cylinder fuel-air mixture distribution in a heavy duty CNG engine", Int. J. Automot. Technol., 2(3), 93-101, (2001)

Kim, C. and Oh, S., "A Study on the Characteristics of Dual Fuel Engine Fueled by Natural Gas and Diesel", KIGAS, 17(6), 20-26, (2013)

Cheenkachorn, K., Poompipatpong, C. and Ho, C. G., "Performance and emissions of a heavyduty diesel engine fuelled with diesel and LNG (liquid natural gas)", Energy, 53, 52-57, (2013) crossref(new window)

Lee, S., Lee, J., Heo, S., Yoon, S. and Roh, Y., "Characteristics of Electronically Controlled 13L LNG-Diesel Dual Fuel Engine", KIGAS, 11(4), 54-58, (2007)

Papagiannakis, R. G. and Hountalas, D. T. "Experimental investigation concerning the effect of natural gas percentage on performance and emissions of a DI dual fuel diesel engine", Applied Thermal Engineering, 23, 353-365, (2003) crossref(new window)

Heywood, J. B., Internal combustion engine fundamentals, McGraw-Hill, New York, (1988)

Glasmachers, H., Melbert, J. and Koch, A., "Sensorless Movement Control of Solenoid Fuel Injectors", SAE Paper, No.2006-01-0407, (2006)

Liu, L. and Chang, S. Q., "Motion control of an electromagnetic valve actuator based on the inverse system method", Proc. IMechE Part D:J. Automobile Engineering, 226(1), 85-93, (2011)