Advanced SearchSearch Tips
Turbulence in temporally decelerating pipe flows
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Turbulence in temporally decelerating pipe flows
Jeong, Wongwan; Lee, Jae Hwa;
  PDF(new window)
Direct numerical simulations (DNSs) of turbulent pipe flows with temporal deceleration were performed to examine response of the turbulent flows to the deceleration. The simulations were started with a fully-developed turbulent pipe flow at the Reynolds number, , based on the pipe radius and the laminar centerline velocity, and three different constant temporal decelerations were applied to the initial flow with varying dU/dt = -0.001274, -0.00625 and -0.025. It was shown that the mean flows were greatly affected by temporal decelerations with downward shift of log law, and turbulent intensities were increased in particular in the outer layer, compared to steady flows at a similar Reynolds number. The analysis of Reynolds shear stress showed that second- and fourth-quadrant Reynolds shear stresses were increased with the decelerations, and the increase of the turbulence was attributed to enhancement of outer turbulent vortical structures by the temporal decelerations.
Direct Numerical Simulation;Turbulent Pipe Flows;Temporal Deceleration;
 Cited by
Mizushina, T., Maruyama, T., Shiozaki, Y., 1973, "Pulsating turbulent flow in a tube," J. Chemical Engineering Japan., vol.6, pp.487-494.

Ramaprian, B.R., Tu, S.W., 1983, "Fully developed periodic turbulent pipe flow. Part 2: The detailed structure of the flow.," J. Fluid Mech., vol.137, pp.59-81. crossref(new window)

Shemer, L., Wygnanski, I., Kit, E., 1985. "Pulsating flow in a tube," J. Fluid Mech., vol.153, pp.313-337. crossref(new window)

Tardu, S.F., Binder, G., Blackwelder, R.F., 1994. "Turbulent channel flow with large amplitude," J. Fluid Mech., vol.267, pp.109-151. crossref(new window)

Scotti, A., Piomelli, U., 2001. "Numerical simulation of pulsating turbulent channel flow," Phys. Fluids., vol.13, pp.1367-1384. crossref(new window)

Scotti, A., Piomelli, U., 2002. "Turbulence models in pulsating flows," AIAA Journal., vol.40, pp.537-543. crossref(new window)

Kataoka, K., Kawabata, T., Miki, K., 1975. "The start-up response of pipe flow to a step change in flow rate," J. Chemical Engineering Japan., vol.8 (4), pp.266-271. crossref(new window)

Maruyama, T., Kuribayashi, T., Mizushina, T., 1976. "The structure of the turbulence in transient flows," J. Chemical Engineering Japan., vol.9, pp.431-439. crossref(new window)

He, S., Jackson, J.D., 2000. "A study of turbulence under conditions of transient flow in a pipe," J. Fluid Mech., vol.408, pp.1-38. crossref(new window)

Greenblatt, D., Moss, E.A., 2004. "Rapid temporal acceleration of a turbulent pipe flow," J. Fluid Mech., vol.514, pp.65-75. crossref(new window)

Jung S.Y., Chung Y.M., 2012. "Large-Eddy simulation of accelerated turbulent flow in a circular pipe," Int. J. Heat and Fluid Flow., vol.33, pp.1-8. crossref(new window)

Nagano, Y., Tagawa, M., Tsuji, T., 1993. "Effects of adverse pressure gradients on mean flows and turbulence statistics in a boundary layer," In: Durst, F., Friedrich, R., Launder, B.E., Schmidt, F.W., Schumann, U., Whitelaw, J.H. (Eds.), Turbulent Shear Flows, vol.8, Springer, Berlin, pp.7-21.

Kim, K., Baek, S.-J., Sung, H.J., 2002. "An implicit velocity decoupling procedure for the incompressible Navier-Stokes equations," Int. J. for Numerical Methods in Fluids., vol.38 (2), pp.125-138. crossref(new window)

Lee J.H., Sung H.J., 2008. "Effects of an adverse pressure gradient on a turbulent boundary layer," Int. J. Heat and Fluid Flow., vol.29, pp.568-578. crossref(new window)

Robinson, S.K., 1991. "Coherent motions in the turbulent boundary layer," Ann. Rev. Fluid Mech., vol.23, pp.601-639. crossref(new window)