JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Study of Membrane Potential Analysis According to Applying Doksam-tang to a Human Heart Failure Model
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Herbal Formula Science
  • Volume 23, Issue 1,  2015, pp.121-131
  • Publisher : The Korean Journal of Oriental Medical Prescription
  • DOI : 10.14374/HFS.2015.23.1.121
 Title & Authors
Study of Membrane Potential Analysis According to Applying Doksam-tang to a Human Heart Failure Model
Jeong, Dae-Yeong; Lee, Boo-Kyun; Hong, Jin-Woo; An, Won-Gun;
  PDF(new window)
 Abstract
Objectives : This study was conducted to investigate the membrane potential to apply Doksam-tang to a human heart failure model. Methods : The human heart model was built by Luo et al. CellML model, Priebe et al. CellML model, and a human heart mesh file. Doksam-tang gives channel the half maximal inhibitory concentration(IC 50 ), half maximal effective concentration(EC 50 ) values and compounds concentrations. These data load into the laptop with Ubuntu OS, and build the library with the data. Results : While results of the study with the heart failure model shows abnormal membrane potential from the normal heart model, the study with applying Doksam-tang to heart failure model shows restoring membrane potential that is similar to normal heart model. Conclusions : These results of the testings suggest that a conception of novel technique to investigate the effects of Korean herbal medicine.
 Keywords
heart failure;computer modelling;Doksam-tang;physiome;korean medicine;systems biology.;
 Language
Korean
 Cited by
 References
1.
Pitt-Francis J, Pathmanathan P, Bernabeu MO, Bordas R, Cooper J, Fletcher AG, et al. Chaste: A test-driven approach to software development for biological modelling. Computer Physics Communications. 2009; 180(12):2452-2471. crossref(new window)

2.
CellML Model Repository - Physiome Model Repository, Available from: URL: http://models.cellml.org

3.
Chaste - Department of Computer Science -University of Oxford, Available from: URL:http://www.cs.ox.ac.uk/chaste/

4.
Pathmanathan P, Bernabeu MO, Bordas R, Cooper J, Garny A, Pitt-Francis JM, Whiteley JP, Gavaghan DJ. A numerical guide to the solution of the bidomain equations of cardiac electrophysiology. Progress in Biophysics and Molecular Biology. 2010; 102(2):136-155. crossref(new window)

5.
Pathmanathan P, Cooper J, Mirams AG, Murray P, Osborne J, Pitt-Francis J, et al. A computational study of discrete mechanical tissue models. Physical biology. 2009; 6(3).

6.
Bernabeu MO, Bordas R, Pathmanathan P, Pitt-Francis Joe, Cooper J, Garny A, et al. Chaste: incorporating a novel multi-scale spatial and temporal algorithm into a large-scale open source library. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2009; 367(1895):1907-1930. crossref(new window)

7.
Pathmanathan P, Whiteley JP. A Numerical Method for Cardiac Mechanoelectric Simulations. Annals of biomedical engineering. 2009; 37(5):860-873. crossref(new window)

8.
Pathmanathan P, Bernabeu MO, Niederer SA, Gavaghan DJ, Kay D. Computational modelling of cardiac electrophysiology: explanation of the variability of results from different numerical solvers. International journal for numerical methods in biomedical engineering. 2012; 28(8):890-903. crossref(new window)

9.
Niederer SA, Kerfoot E, Benson AP, Bernabeu MO, Bernus O, Bradley C, et al. Verification of cardiac tissue electrophysiology simulators using an N-version benchmark. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2011; 369(1954):4331-4351. crossref(new window)

10.
Dutta S, Bishop MJ, Pathmanathan P, Lee P, Kohl P, Quinn TA, et al. Interpreting Optical Mapping Recordings in the Ischemic Heart: A Combined Experimental and Computational Investigation. Springer Berlin Heidelberg LNCS. 2011; 6666:20-27.

11.
Zemzemi N, Bernabeu MO, Saiz J, Rodriguez B. Simulating Drug-Induced Effects on the Heart: From Ion Channel to Body Surface Electrocardiogram. Springer Berlin Heidelberg LNCS. 2011; 6666:259-266.

12.
Wallman M, Smith NP, Rodriguez B. A Comparative Study of Graph-Based, Eikonal, and Monodomain Simulations for the Estimation of Cardiac Activation Times. IEEE Transactions. 2012; 59(6):1739-1748.

13.
Bernabeu MO, Corrias A, Pitt-Francis J, Rodriguez B, Bethwaite B, Enticott C, et al. Grid Computing Simulations of Ion Channel Block Effects on the ECG Using 3D Anatomically-Based Models. Computers in Cardiology. 2009; 36:213-216.

14.
Corrias A, Jie X, Romero L, Bishop MJ, Bernabeu M, Pueyo E, et al. Arrhythmic risk biomarkers for the assessment of drug cardiotoxicity: from experiments to computer simulations. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2010; 368(1921):3001-3025. crossref(new window)

15.
Zemzemi N, Bernabeu MO, Saiz J, Cooper J, Pathmanathan P, Mirams, GR, et al. British Journal of Pharmacology, Computational assessment of drug-induced effects on the electrocardiogram: from ion channel to body surface potentials. British journal of pharmacology. 2012; 168(3):718-733.

16.
Luo G. Systems biology for traditional Chinese medicine. 1st ed. John Wiley & Sons. 2012:131-146.

17.
Luo CH, Rudy Y. A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes, Circulation research. 1994; 74(6):1071-1096. crossref(new window)

18.
Priebe L, Beuckelmann DJ. Simulation study of cellular electric properties in heart failure. Circulation research. 1998; 82(11):1206-1223. crossref(new window)

19.
Lee, SH, Lee JS, Bibliographical study on flaccid type of apoplexy, Daejeon University, Institute of korean medicine, 2007; 1:175-187.

20.
gnuplot homepage, Available from: URL: http://www.gnuplot.info

21.
ParaView, Available from: URL: http://www.paraview.org

22.
Finite element implementation, Available from: URL: https://chaste.cs.ox.ac.uk/chaste/tutorials/release_3.2/ChasteGuides/FiniteElementImple mentations/fem_implementation.pdf

23.
Tamargo J, Caballero R, Gómez R, Valenzuela C, Delpón E. Pharmacology of cardiac potassium channels. Cardiovascular research. 2004; 62(1):9-33. crossref(new window)

24.
Wu JY, Lin L, Chau F. Ultrasound-assisted extraction of ginseng saponins from ginseng roots and cultured ginseng cells. Ultrasonics sonochemistry. 2001; 8(4):347-352. crossref(new window)

25.
Joo HK, Cho KS. Studies on the Extracting Methods of Ginseng Extract and Saponins in Panax Ginseng. Journal of Ginseng Research. 1979; 3(1):40-53.

26.
Sohn HJ, Jang JG, Lee KS, Kim JG, Lee YW. The study on extraction methods of saponin in ginseng products. Journal of Ginseng Research. 1984; 8(1):32-37.

27.
Tawab MA, Bahr U, Karas M, Wurglics M, Schubert-Zsilavecz M. Degradation of ginsenosides in humans after oral administration. Drug metabolism and Disposition. 2003; 31(8):1065-1071. crossref(new window)

28.
Attele AS, Wu JA, Yuan CS. Ginseng pharmacology: multiple constituents and multiple actions. Biochemical pharmacology. 1999; 58(11):1685-1693. crossref(new window)

29.
Choi KT. Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng CA Meyer. Acta Pharmacologica Sinica. 2008; 29(9):1109-1113. crossref(new window)

30.
Nah SY, Kim DH, Rhim H. Ginsenosides: are any of them candidates for drugs acting on the central nervous system?. CNS drug reviews. 2007; 13(4):381-404.

31.
Mahajan A, Shiferaw Y, Sato D, Baher A, Olcese R, Xie LH, et al. A Rabbit Ventricular Action Potential Model Replicating Cardiac Dynamics at Rapid Heart Rates. Biophysical journal. 2008; 94(2):392-410. crossref(new window)

32.
Baia CX, Sunamia A, Namikib T, Sawanoboria T, Furukawa T. Electrophysiological effects of ginseng and ginsenoside Re in guinea pig ventricular myocytes. European journal of pharmacology. 2003; 476(1):35-44. crossref(new window)

33.
Im DS, Nah SY. Yin and Yang of ginseng pharmacology: ginsenosides vs gintonin. Acta Pharmacologica Sinica. 2013; 34(11):1367-1373. crossref(new window)

34.
Lee CH, Kim JH. A review on the medicinal potentials of ginseng and ginsenosides on cardiovascular diseases. J Ginseng Res. 2014; 38:161-166. crossref(new window)

35.
Wang YG, Zima AV, Ji X, Pabbidi R, Blatter LA, Lipsius SL. Ginsenoside Re suppresses electromechanical alternans in cat and human cardiomyocytes. American Journal of Physiology-Heart and Circulatory Physiology. 2008; 295(2):851-859. crossref(new window)

36.
Choi S, Jung SY, Kim CH, Kim HS, Rhimd H, Kim SC, et al. Effect of ginsenosides on voltage-dependent Ca 2+ channel subtypes in bovine chromaffin cells. Journal of ethnopharmacology. 2001; 74(1):75-81. crossref(new window)

37.
Lü JM, Yao Q, Chen C. Ginseng compounds: an update on their molecular mechanisms and medical applications. Current vascular pharmacology. 2009; 7(3):293-302. crossref(new window)

38.
Lee JH, Jeong SM, Kim JH, Lee BH, Yoon IS, Lee JH, et al. Characteristics of Ginsenoside Rg3-Mediated Brain Na+ Current Inhibition. Molecular pharmacology. 2005; 68(4):1114-1126. crossref(new window)