JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Mitochondria protection of Sparganii Rhizoma against oxidative stress in heptocytes
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Herbal Formula Science
  • Volume 23, Issue 2,  2015, pp.189-198
  • Publisher : The Korean Journal of Oriental Medical Prescription
  • DOI : 10.14374/HFS.2015.23.2.189
 Title & Authors
Mitochondria protection of Sparganii Rhizoma against oxidative stress in heptocytes
Seo, Hye-Lim; Lee, Ju-Hee; Jang, Mi-Hee; Kwon, Young-Won; Cho, Il-Je; Kim, Kwang-Joong; Park, Sook-Jahr; Kim, Sang-Chan; Kim, Young-Woo; Byun, Sung-Hui;
  PDF(new window)
 Abstract
Objectives : Sparganii Rhizoma is frequently used in traditional herbal medicine for treatment of blood stasis, amenorrhea and functional dyspepsia and has been reported to exhibit anti-oxidant, anti-proliferation and anti-angiogenesis peoperties. In this study, we investigated the cytoprotective effect and underlying mechanism of Sparganii Rhizoma water extract (SRE) against oxidative stress-induced mitochondrial dysfunction and apoptosis in hepatocyte. Methods : To determine the effects of SRE on oxidative stress, we induced synergistic cytotoxicity by co-treatment of arachidonic acid (AA) and iron in the HepG2 cell, a human derived hepatocyte cell line. Results : Treatment of SRE increased relative cell viability and altered the expression levels of apoptosis-related proteins such as Bcl-xL, Bcl-2 and procaspase-3. And SRE also inhibited the mitochondrial dysfunction and excessive reactive oxygen species production induced by AA+iron. In addition, SRE activated of AMP-activated protein kinase (AMPK), a potential target for cytoprotection, by increasing the phosphorylation of AMPKα at Thr-172. Morever, SRE increased phosphorylation of acetyl-CoA carboxylase, a direct downstream target of AMPK. Conclusion : These results indicated that SRE has the ability to protect against oxidative stress-induced hepatocyte damage, which may be mediated with AMPK pathway.
 Keywords
Sparganii Rhizoma;hepatocyte;mitochondria;oxidative stress;AMPK;
 Language
Korean
 Cited by
 References
1.
Murgia M, Giorgi C, Pinton P, Rizzuto R: Controlling metabolism and cell death: At the heart of mitochondrial calcium signalling. Journal of molecular and cellular cardiology. 2009;46(6):781-788. crossref(new window)

2.
Stowe DF, Camara AK: Mitochondrial reactive oxygen species production in excitable cells: Modulators of mitochondrial and cell function. Antioxidants & redox signaling. 2009;11(6):1373-1414. crossref(new window)

3.
Green DR, Kroemer G: The pathophysiology of mitochondrial cell death. Science. 2004;305(5684):626-629. crossref(new window)

4.
Browning JD, Horton JD. Molecular mediators of hepatic steatosis and liver injury. J Clin Invest. 2004;114:147-52. crossref(new window)

5.
Cocco T, Di Paola M, Papa S, Lorusso M. Arachidonic acid interaction with the mitochondrial electron transport chain promotes reactive oxygen species generation. Free radic Biol Med. 1999;27:51-9. crossref(new window)

6.
Scorrano L, Penzo D, Petronilli V, Pagano F, Bernardi P. Arachidonic acid caused cell death through the mitochondrial permeability transition. Implications for tumor necrosis factor-alha apoptotic signaling. J Biol Chem. 2001;276:12035-40. crossref(new window)

7.
Aisen P, Enns C, Wessling-Resnick M. Chemistry and biology of eukaryotic iron metabolism. Int J Biochem Cell Biol. 2001;33(10):940-959 crossref(new window)

8.
Swanson CA. Iron intake and regulation: implications for iron deficiency and iron overload. Alcohol. 2003;30(2):99-102 crossref(new window)

9.
McLaren CE, Gordeuk VR, Looker AC, Hasselblad V, Edwards CQ, Griffen LM, Kushner JP, Brittenham GM, Prevalence of heterozygotes for hemochromatosis in the white population of the United States. Blood. 1995;86:2021-7.

10.
Muralikrishna Adibhatla R, Hatcher JF. Phospholipase A2, reactive oxygen species, and lipid peroxidation in cerevral ischemia. Free Radic Biol Med. 2006;40:376-87. crossref(new window)

11.
Claria, J. : Regulation of cell proliferation and apoptosis by bioactive lipid mediators. Recent Pat. Anticancer Drug Discov. 2006;1:369.

12.
Nakanishi, M. and Rosenberg, D. W. : Roles of cPLA2a and arachidonic acid in cancer. Biochim. Biophys. Acta. 2006;1761:1335. crossref(new window)

13.
Scorrano, L., Penzo, D., Petronilli, V., Pagano, F. and Bernardi, P. : Mitochondria are direct targets of the lipoxygenase inhibitor MK886. A strategy for cell killing by combined treatment with MK886 and cyclooxygenase inhibitors. J. Biol. Chem. 2001; 276:12035. crossref(new window)

14.
Shin SM, Kim SG. Inhibition of arachidonic acid and iron-induced mitochondrial dysfunction and apoptosis by oltipraz and nove 1,2-dithiole-3thione congeners. Mol Pharmacol 2009;75:242-53. crossref(new window)

15.
Jang WD. Compound of Sparganii Rhizoma. Journal of chinese medicine. 1995;20(8):486-487.

16.
Kim JG, Kang YM, Eum GS, Ko YM, Kim TY. Antioxidative activity and antimicrobial activity of extracts from medicinal plants. Journal of agriculture & Life sciences. 2003;37(4): 69-75.

17.
Lee BC, Kim JH, Sim GS, Zhang YH, Pyo HB. The inhibitory effects of the Sparganii Rhizoma on melanogenesis. J. Soc. Cosmet. Scientists. 2005;31(4):305-310.

18.
Wood A, Azzout-Marniche D, Foretz M, Stein SC, Lemarchand P, Ferre P, Foufelle F, Carling D: Characterization of the role of AMP-activated protein kinase in the regulation of glucose-activated gene expression using constiutively active and dominant negative forms of the kinase. Mol Cell Biol. 2000;20:6704-6711. crossref(new window)

19.
Foretz M, Carling D, Guichard C, Ferre P, Foufelle F: AMP-activated protein kinase inhibits the glucose-activated expression of fatty acid synthase gene in rat hepatocytes. J Biol Chem 1988;273:14767-1771

20.
Assifi MM, Suchankova G, Constant Sm Prenki M, Saha AK, Ruderman NB: AMP-activated protein kinase and coordination of hepatic fatty acid metabolism of starved/carbohydrate-refed rats. Am j Physiol Endocrinol Metab. 2005;289: E794-E800. crossref(new window)

21.
Das S, Wong R, Rajapakes N, Murphy E, Steenbergen C. Glycogen synthase kinase 3 inhibition slows mitochondrial adenine nucleotide transport and regulates voltage-dependent anion channel phosphorylation. Circ Res. 2008;103:983-91. crossref(new window)

22.
Grimes CA, jope RS. The multifaceted roles of glycogen synthase kinase 3 beta in cellular signaling. Prog Neurobiol. 2001;65:391-426. crossref(new window)

23.
Kockeritz L, Doble B, Patel S, Woodgett JR. Glycogen synthase kinase-3-an overview of an over-achieving protein kinase. Curr Drug Targets. 2006;7:1377-88. crossref(new window)

24.
Tong H, Imahashi K, Steenbergen C, Murphy E. Posphrylation of glycogen synthase kinase-3β during preconditioning through a phosphatidylinositol-3-kinase-dependent pathway is cardioprotective. Circ Res. 2002;90:377-9. crossref(new window)

25.
Shin SM, Cho IJ, Kim SG. Resveratrol protects mitochondria against oxidative stress through AMPK-mediated GSK3β inhibition downstream of poly(ADP-ribose)polymerase-LKB1 pathway. Mol Pharmacol. 2009;76:884-95. crossref(new window)

26.
Henderson LM, Chappel JB. Article NADPH oxidase of neutrophils. Biochim Biophys Acta. 1996;1273: 87-107. crossref(new window)

27.
Lee SM, Koh HJ, Park DC, Song BJ, Huh TL, Park JW. Cytosolic NADP+-dependent isocitrate dehydrogenase status modulates oxidative damage to cells. Free Radic Biol Med. 2002;32: 1185-1196. crossref(new window)

28.
Galaris, D., Pantopoulos, K. Oxidative stress and iron homeostasis: mechanistic and health aspects. Crit Rev Clin Lab Sci. 2008;45(1):1-23 crossref(new window)

29.
Choi SH, Kim YW, Kim SG. AMPK-mediated GSK-3beta inhibition by isoliquiritigenine contributes to protecting mitochondria against iron-catalyzed oxidative stress. Biochem Pharmacol. 2010;79(9):1352-62. crossref(new window)

30.
Korea professors of Herbal medicine. Herbal medicine. Youngrimsa korea. 1991;418-9.

31.
Shin SY, Doh SH, Shin KH. Chemical constituents of the Rhizomes of Sparganium stoloniferum. Yakhakhoeji. 2000;44(4): 334-339.

32.
Huh SJ, Lee GS, Song BK. Study on the analgesic and anticoagulative effects of Sparganii rhizoma aqua acupuncture. The society of korean medicine obstetrics and gynecology. 2000;8:98.

33.
Shin SJ, Lee JH. Antitumor effects of SKT (Skullcap - Knope sedge - Trametes) mixture extract. Korea journal of Pharmacogn. 2004;35(4):325.

34.
Ashkenazi A, Dixit VM. Death receptors : signaling and modulation. Science. 1998;281(5381): 1305-8. crossref(new window)

35.
Cryns V, Yuan J. Proteases to die for. Genes Dev. 1998;12(11):1551-70. crossref(new window)

36.
Tewari M, Quan LT, O'Rourke K, Desnoyers S, Zeng Z, Beidler DR, et al. Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell. 1995;81(5):801-809. crossref(new window)

37.
Wang ZQ, Stingl L, Morrison C, Jantsch M, Los M, Schulze-Osthoff K, Wagner EF. PARP is important for genomic stability but dispensable in apoptosis. Genes & Dev. 1997;11(18):2347-2358. crossref(new window)

38.
Kang YK, EA Lee, HR Park. Neuroprotective effect according to reactive oxugen species scavenging activity from extracts of cudrania tricuspidata leaves. Korean J Food cookery Sci. 2012;28(6):821-8. crossref(new window)

39.
Shindo, Y., Witt, E., Han, D., Epstein, W., Packer, L. Enzymic and non-enzymic antioxidants in epidermis and dermis of human skin. J Invest Dermatol. 1944;102(1):112-128.

40.
Yeom, J.B., Han, J. Mitochondrial Physiology. Korean Society of Medical Biochemistry and Molecular Biology. 2008;15(1):25-33.

41.
Cocco, T., DiPaola, M., Papa, S., Lorusso, M. Arachidonic acid interaction with the mitochondrial electron transport chain promotes reactive oxygen species generation. Free Radic Biol Med. 1999;27(1-2):51-59. crossref(new window)

42.
Lan F, Cacicedo CJM, Ruderman N, Ido Y: SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation. J Biol Chem. 2008;283:27628-27635. crossref(new window)

43.
Towler, M.C., Hardie, D.G. AMP-activated protein kinase in metabolic control and insulin signaling. Circ Res. 2007;100(3):328-341. crossref(new window)

44.
Carling, D. The AMP-activated protein kinase cascade—a unifying system for energy control. Trends Biochem Sci. 2004;29(1):18-24. crossref(new window)

45.
Hawley, S.A., Davison, M., Woods, A., Davies, S.P., Beri, R.K., Caring, D., Hardie, D.G. Haracterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. J Biol Chem. 1996;271(44):27879-27887. crossref(new window)

46.
Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA, DePinho RA, Cantley LC. The tumor suppressor LKB1 kinase directly activates AMP-actkvated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci USA. 2000;101:3329-35.

47.
Lan F, Cacicedo JM, Ruderman N, Ido Y: SIRT1 modulation of the acetylation status, cytosolic localization, andactivity of LKB1. Possible role in AMP-activted protein kinase activation. J Biol Chem. 2008;283:27628-27635. crossref(new window)

48.
Juhaszova M, Zorov DB, Kim SH, Pepe S, Fu Q, Fishbein KW, Ziman BD, Wang S, Ytrehus K, Antos CL, Olson EN, Sollott SJ. Glycogen synthase kinase-3beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J Clin Invest. 2004;113:1535-49. crossref(new window)

49.
Shin SM, Cho IJ, Kim SG. Resveratrol protects mitochondria against oxidative stress through AMPK-mediated GSK3β inhibition downstream of poly(ADP-ribose) polymerase-LKB1 pathway. Mol Pharmacol. 2009;76:884-95. crossref(new window)