Advanced SearchSearch Tips
Isolation of Lipid High-yielding Chlorella vulgaris Mutants by UV Irradiation
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Isolation of Lipid High-yielding Chlorella vulgaris Mutants by UV Irradiation
Jeong, Haeng Soon; Choi, Min Kyung; Choi, Tae-O; Lee, Jae-Hwa;
  PDF(new window)
Chlorella vulgaris, a genus of single-cell green algae, is considered to be a very essential resource for the higher value-added business including functional food and biodiesel, due to its high contents of protein, carbohydrate and lipid. In this study, ultraviolet rays were irradiated in order to induce the mutation of C. vulgaris. After inducing the mutation, UV1-20 mutant, high in lipid was selected and its cell growth rate, dry weight, pigment content and lipid content were measured. The growth rate of the UV1-20 mutant was increased almost 1.5 times than the wild type, but pigment contents of chlorophyll and carotinoid were decreased. In addition, the lipid content of UV1-20 was increased 1.8 times than the wild type. Therefore, C. vulgaris mutant, isolated in this study, is considered to have sufficient potential to be used as a material for the higher value-added business.
microalgae;Chlorella vulgaris;lipid;ultra violet;mutation;
 Cited by
EMS (Ethyl Methane Sulphonate) 처리에 의한 Chlorella Vulgaris 변이주 생성 및 특성 분석,김옥주;이재화;

공업화학, 2015. vol.26. 3, pp.265-269 crossref(new window)
Characterization of Chlorella Vulgaris Mutants Generated by EMS (Ethyl Methane Sulphonate), Applied Chemistry for Engineering, 2015, 26, 3, 265  crossref(new windwow)
Atsushi, M. 1999. What is Chlorella. Food Ind. 9, 122-138.

Bilanovic, D., Andargatchew, A., Kroeger, T. and Shelef, G. 2009. Freshwater and marin microalgae sequestering of $CO_2$ at different C and N concentrations-response surface methodology analysis. Energ. Convers. Manage. 50, 262-267. crossref(new window)

Caldwell, C. R. 1993. Ultraviolet-induced photo degradation of cucumber (Cucumis sativus L.) microsomal and soluble protein tryptophanyl residues in vitro, Plant Physiol. 101, 947-953. crossref(new window)

Chen, W., Sommerfeld, M. and Hu, Q. 2011. Microwave-assisted nile red method for in vivo quantification of neutral lipids in microalgae. Biores. Technol. 102, 135-141. crossref(new window)

Chiu, S. Y., Kao, C. Y., Tsai, M. T. Ong, S. C., Chen, C. H. and Lin, C. S. 2009. Lipid accumulation and $CO_2$ utilization of Nannochloropsis oculata in response to $CO_2$ aeration. Bioresour. Technol. 100, 833-838. crossref(new window)

Choi, H.-J. and Lee, S.-M. 2011. Effect of temperature, light intensity and pH on the growth rate of Chlorella vulgaris. Journal of KSEE. 33, 511-515. crossref(new window)

Choi, S.-J., Kim, Y.-H., Kim, A. and Lee, J.-H. 2013. Arthrospira platensis mutants containing high lipid content by electron beam irradiation and analysis of its fatty acid composition. Appl. Chem. Eng. 24, 628-632. crossref(new window)

Clark, J. H., Budarin, V., Deswarte, F. E. I., Hardy, J. J., Kerton, F. M., Junt, A. J., Luque, R., Macquarrie, D. J., Milkowski, K., Rodriguez, A. Samuel, O., Tavener, S. J. White, R. J. and Wilson A. J. 2006. Green chemistry and the biorefinery: A partnership for a sustainable future. Green Chem. 8, 853-860. crossref(new window)

Cood, G. A., Okabe, K. and Stewart, W. P. 1980. Cellular compartmentation of photosynthetic and photorespiratory enzymes in the heterocystous cyanobacterium Anabaena cylindrica. Arch. Microbiol. 124, 149-154.

Jeong, U-C., Han, J.-C., Choi, B.-D. and Kang, S.-J. 2013. Lipid and fatty acid composition in Nannochloropsis oculata cultured in varying salinities. Kor. J. Fish. Aquat. Sci. 46, 252-258. crossref(new window)

Kang, M.-S., Sim, S.-J. and Chae, H. J. 2004. Chlorella as a functional biomaterial. Korean J. Biotechnol. Bioeng. 19, 1-11.

Kim, J.-H., Park, H.-J., Kim, Y.-H., Joo, H., Lee, S.-H. and Lee, J.-H. UV-induced mutagenesis of Nannochloropsis oculata for the increase of lipid accumulation and its characterization. Appl. Chem. Eng. 24, 155-160.

Kim, Y.-H. and Lee, J.-H. 2012. Isolation of Arthrospira platensis mutants producing high lipid and phycobiliproteins. J. Korean Biotech. Bioen. 27, 172-176. crossref(new window)

Park, S.-J., Choi, Y.-E, Kim, C. W., Park, W.-K. and Yang, J.-W. 2010. Production of biomass and lipid using microalga Nannochloris oculata under different conditions of nitrogen and irradiance. Journal of KSBB. 25, 553-558.

Rodolfi, L., Zittelli, G. C. Bassi, N., Padovani, G. Biondi, N., Bonini, G. and Terdici M. R. 2009. Microalgae for oil : strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng. 102, 100-112. crossref(new window)

Sisson, W. B. and Caldwell, M. M. 1976. Photosynthesis, dark respiration, and growth of Rumex patientia L. exposed to ultraviolet irradiance (288-15 nm) simulating a reduced ozone column. Plant physiol. 58, 563-568. crossref(new window)

Teramura, A. H., Biggs, R. H. and Kossuth, S. 1980. Effect of ultraviolet-B irradiance on soybean II. Interaction between ultraviolet-B and photosynthetically active radiation on net photosynthesis, dark respiration, and transpiration, Plant Physiol. 65, 483-488. crossref(new window)

Wang, B., Li, Y. Q., Wu, N. and Lan, C. Q. 2008. $CO_2$ biomitigation using microalgae. Appl. Microbiol. Biotechol. 79, 707-718. crossref(new window)