JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Biofuel production from macroalgae toward bio-based economy
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Biofuel production from macroalgae toward bio-based economy
Lim, Hyun Gyu; Kwak, Donghun; Jung, Gyoo Yeol;
  PDF(new window)
 Abstract
Macroalgae has been strongly touted as an alternative biomass for biofuel production due to its higher photosynthetic efficiency, carbon fixation rate, and growth rate compared to conventional cellulosic plants. However, its unique carbohydrate composition and structure limits the utilization efficiency by conventional microorganisms, resulting in reduced growth rates and lower productivity. Nevertheless, recent studies have shown that it is possible to enable microorganisms to utilize various sugars from seaweeds and to produce some energy chemicals such as methane, ethanol, etc. This paper introduces the basic information on macroalgae and the overall conversion process from harvest to production of biofuels. Especially, we will review the successful efforts on microbial engineering through metabolic engineering and synthetic biology to utilize carbon sources from red and brown seaweed.
 Keywords
Macroalgae;Seaweed;Biofuel;Metabolic engineering;Synthetic biology;
 Language
Korean
 Cited by
1.
Synthetic redesign of Escherichia coli for cadaverine production from galactose, Biotechnology for Biofuels, 2017, 10, 1  crossref(new windwow)
 References
1.
Zhang, F, Rodriguez, S, Keasling, JD. 2011. Metabolic engineering of microbial pathways for advanced biofuels production. Metab. Eng., 22, 775-783.

2.
Choi, YJ, Lee, SY. 2013. Microbial production of short-chain alkanes. Nature, 502, 571-574. crossref(new window)

3.
Rathnasingh, C, Raj, SM, Jo, J-E, Park, S. 2009. Development and evaluation of efficient recombinant Escherichia coli strains for the production of 3-hydroxypropionic acid from glycerol. Biotechnol. Bioeng., 104, 729-739.

4.
Du, J, Shao, Z, Zhao, H. 2011. Engineering microbial factories for synthesis of value-added products. J. Ind. Microbiol. Biot., 38, 873-890. crossref(new window)

5.
Wei, N, Quarterman, J, Jin, Y-S. 2013. Marine macroalgae: an untapped resource for producing fuels and chemicals. Trends Biotechnol., 31, 70-77. crossref(new window)

6.
Tenenbaum, DJ. 2008. Food vs. Fuel: Diversion of Crops Could Cause More Hunger. Environ. Health Perspect., 116, A254-A257. crossref(new window)

7.
G. Cassman, K, Liska, AJ. 2007. Food and fuel for all: realistic or foolish? Biofuel. Bioprod. Bior., 1, 18-23. crossref(new window)

8.
Kondo, A, Ishii, J, Hara, KY, Hasunuma, T, Matsuda, F. 2013. Development of microbial cell factories for biorefinery through synthetic bioengineering. J. Biotechnol., 163, 204-216. crossref(new window)

9.
Olson, DG, McBride, JE, Joe Shaw, A, Lynd, LR. 2012. Recent progress in consolidated bioprocessing. Curr. Opin. Biotechnol., 23, 396-405. crossref(new window)

10.
Singhvi, MS, Chaudhari, S, Gokhale, DV. 2014. Lignocellulose processing: a current challenge. RSC Advances, 4, 8271-8277. crossref(new window)

11.
Jonsson LJ, Alriksson B, Nilvebrant NO. 2013. Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol. Biofuels, 6, 13. crossref(new window)

12.
Frei, M. 2013. Lignin: Characterization of a Multifaceted Crop Component. Sci. World. J., 2013, 25.

13.
Himmel, ME, Ding, S-Y, Johnson, DK, Adney, WS, Nimlos, MR, Brady, JW, Foust, TD. 2007. Biomass Recalcitrance: Engineering Plants and Enzymes for Biofuels Production. Science, 315, 804-807. crossref(new window)

14.
Mata, TM, Martins, AA, Caetano, NS. 2010. Microalgae for biodiesel production and other applications: A review. Renew. Sust. Energ. Rev., 14, 217-232. crossref(new window)

15.
John, RP, Anisha, GS, Nampoothiri, KM, Pandey, A. 2011. Micro and macroalgal biomass: A renewable source for bioethanol. Bioresour. Technol., 102, 186-193. crossref(new window)

16.
FAO. Yearbook of Fishery statistics - aquaculture production, 2010. Food and Agriculture Organization of the United Nations, Rome

17.
Ryu, JG, Cho, JH, Kim, DY. 2009. Strategies to Industrialize the Algae Bio-business and Policy Direction. Korea Maritime Institute, Korea

18.
Gao, K, McKinley, K. 1994. Use of macroalgae for marine biomass production and CO2 remediation: a review. J. Appl. Phycol., 6, 45-60. crossref(new window)

19.
Roesijadi G, SBJ, LJ Snowden-Swan, Y Zhu. 2010. Macroalgae as a Biomass Feedstock: A Preliminary Analysis. Pacific Northwest National Laboratory, PNNL-19944.

20.
Hughes, AD, Kelly, MS, Black, KD, Stanley, MS. 2012. Biogas from Macroalgae: is it time to revisit the idea? Biotechnol. Biofuels, 5, 86. crossref(new window)

21.
Daroch, M, Geng, S, Wang, G. 2013. Recent advances in liquid biofuel production from algal feedstocks. Appl. Energy, 102, 1371-1381. crossref(new window)

22.
Gorke, B, Stulke, J. 2008. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat. Rev. Micro., 6, 613-624. crossref(new window)

23.
Vinuselvi, P, Kim, MK, Lee, SK, Ghim, CM. 2012. Rewiring carbon catabolite repression for microbial cell factory. BMB Rep., 45, 59-70. crossref(new window)

24.
Lim, JH, Seo, SW, Kim, SY, Jung, GY. 2013. Model-driven rebalancing of the intracellular redox state for optimization of a heterologous n-butanol pathway in Escherichia coli. Metab. Eng., 20, 56-62. crossref(new window)

25.
Lim, HG, Seo, SW, Jung, GY. 2013. Engineered Escherichia coli for simultaneous utilization of galactose and glucose. Bioresour. Technol., 135, 564-567. crossref(new window)

26.
Adams, JMM, Toop, TA, Donnison, IS, Gallagher, JA. 2011. Seasonal variation in Laminaria digitata and its impact on biochemical conversion routes to biofuels. Bioresour. Technol., 102, 9976-9984. crossref(new window)

27.
S. Kaehler, RK. 1996. Summer and winter comparisons in the nutritional value of marine macroalgae from Hong Kong. Bot. Mar., 39, 11-17.

28.
Lindsey Zemke-White, W, Ohno, M. 1999. World seaweed utilisation: An end-of-century summary. J. Appl. Phycol., 11, 369-376. crossref(new window)

29.
Tom Bruton, HL, Yannick Lerat, Michele Stanley, Michael Bo Rasmussen. 2009. A Review of the Potential of Marine Algae as a Source of Biofuel in Ireland. Sustainable Energy Ireland, Ireland

30.
Talebnia, F, Karakashev, D, Angelidaki, I. 2010. Production of bioethanol from wheat straw: An overview on pretreatment, hydrolysis and fermentation. Bioresour. Technol., 101, 4744-4753. crossref(new window)

31.
Jeong, TS, Choi, CH, Lee, JY, Oh, KK. 2012. Behaviors of glucose decomposition during acid-catalyzed hydrothermal hydrolysis of pretreated Gelidium amansii. Bioresour. Technol., 116, 435-440. crossref(new window)

32.
Park, J-H, Hong, J-Y, Jang, HC, Oh, SG, Kim, S-H, Yoon, J-J, Kim, YJ. 2012. Use of Gelidium amansii as a promising resource for bioethanol: A practical approach for continuous dilute-acid hydrolysis and fermentation. Bioresour. Technol., 108, 83-88. crossref(new window)

33.
Park, H, Kam, N, Lee, E, Kim, H. 2012. Cloning and Characterization of a Novel Oligoalginate Lyase from a Newly Isolated Bacterium Sphingomonas sp. MJ-3. Mar. Biotechnol., 14, 189-202. crossref(new window)

34.
Wong, TY, Preston, LA, Schiller, NL. 2000. ALGINATE LYASE: Review of Major Sources and Enzyme Characteristics, Structure-Function Analysis, Biological Roles, and Applications. Annu. Rev. Microbiol., 54, 289-340. crossref(new window)

35.
Jang, J-S, Cho, Y, Jeong, G-T, Kim, S-K. 2012. Optimization of saccharification and ethanol production by simultaneous saccharification and fermentation (SSF) from seaweed, Saccharina japonica. Bioprocess Biosyst Eng, 35, 11-18. crossref(new window)

36.
Martin, M, Portetelle, D, Michel, G, Vandenbol, M. 2014. Microorganisms living on macroalgae: diversity, interactions, and biotechnological applications. Appl. Microbiol. Biotechnol., 98, 2917-2935. crossref(new window)

37.
Holden, HM, Rayment, I, Thoden, JB. 2003. Structure and Function of Enzymes of the Leloir Pathway for Galactose Metabolism. J. Biol. Chem., 278, 43885-43888. crossref(new window)

38.
Vivekanand, V, Eijsink, VH, Horn, S. 2012. Biogas production from the brown seaweed Saccharina latissima: thermal pretreatment and codigestion with wheat straw. J. Appl. Phycol., 24, 1295-1301. crossref(new window)

39.
Park, J-H, Yoon, J-J, Park, H-D, Lim, DJ, Kim, S-H. 2012. Anaerobic digestibility of algal bioethanol residue. Bioresour. Technol., 113, 78-82. crossref(new window)

40.
Meinita, M, Kang, J-Y, Jeong, G-T, Koo, H, Park, S, Hong, Y-K. 2012. Bioethanol production from the acid hydrolysate of the carrageenophyte Kappaphycus alvarezii(cottonii). J. Appl. Phycol., 24, 857-862. crossref(new window)

41.
Kim, Y, Kim, D, Kim, T, Shin, MK, Kim, YJ, Yoon, JJ, Chang, IS. 2013. Use of red algae, Ceylon moss (Gelidium amansii), hydrolyzate for clostridial fermentation. Biomass Bioenerg, 56, 38-42. crossref(new window)

42.
Lee, KS, Hong, ME, Jung, SC, Ha, SJ, Yu, BJ, Koo, HM, Park, SM, Seo, JH, Kweon, DH, Park, JC, Jin, YS. 2011. Improved Galactose Fermentation of Saccharomyces cerevisiae Through Inverse Metabolic Engineering. Biotechnol. Bioeng., 108, 621-631. crossref(new window)

43.
Ostergaard, S, Olsson, L, Johnston, M, Nielsen, J. 2000. Increasing galactose consumption by Saccharomyces cerevisiae through metabolic engineering of the GAL generegulatory network. Nat. Biotech., 18, 1283-1286. crossref(new window)

44.
Kim, N-J, Li, H, Jung, K, Chang, HN, Lee, PC. 2011. Ethanol production from marine algal hydrolysates using Escherichia coli KO11. Bioresour. Technol., 102, 7466-7469. crossref(new window)

45.
Kim, SR, Ha, S-J, Wei, N, Oh, EJ, Jin, Y-S. 2012. Simultaneous co-fermentation of mixed sugars: a promising strategy for producing cellulosic ethanol. Trends Biotechnol., 30, 274-282. crossref(new window)

46.
Ha, S-J, Wei, Q, Kim, SR, Galazka, JM, Cate, J, Jin, Y-S. 2011. Cofermentation of Cellobiose and Galactose by an Engineered Saccharomyces cerevisiae Strain. Appl. Environ. Microbiol., 77, 5822-5825. crossref(new window)

47.
Vinuselvi, P, Lee, SK. 2012. Engineered Escherichia coli capable of co-utilization of cellobiose and xylose. Enzyme Microb. Technol., 50, 1-4. crossref(new window)

48.
Seo, SW, Yang, J-S, Kim, I, Yang, J, Min, BE, Kim, S, Jung, GY. 2013. Predictive design of mRNA translation initiation region to control prokaryotic translation efficiency. Metab. Eng., 15, 67-74. crossref(new window)

49.
Lian, J, Chao, R, Zhao, H. 2014. Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol. Metab. Eng., 23, 92-99. crossref(new window)

50.
Yun, EJ, Shin, MH, Yoon, J-J, Kim, YJ, Choi, I-G, Kim, KH. 2011. Production of 3,6-anhydro-l-galactose from agarose by agarolytic enzymes of Saccharophagus degradans 2-40. Process Biochem., 46, 88-93. crossref(new window)

51.
Yun, E, Lee, S, Kim, J, Kim, B, Kim, H, Lee, S, Pelton, J, Kang, N, Choi, I-G, Kim, K. 2013. Enzymatic production of 3,6-anhydro-l-galactose from agarose and its purification and in vitro skin whitening and anti-inflammatory activities. Appl. Microbiol. Biotechnol., 97, 2961-2970. crossref(new window)

52.
Wargacki, AJ, Leonard, E, Win, MN, Regitsky, DD, Santos, CNS, Kim, PB, Cooper, SR, Raisner, RM, Herman, A, Sivitz, AB, et al. 2012. An Engineered Microbial Plat form for Direct Biofuel Production from Brown Macroalgae. Science, 335, 308-313. crossref(new window)

53.
Adams, J, Gallagher, J, Donnison, I. 2009. Fermentation study on Saccharina latissima for bioethanol production considering variable pre-treatments. J. Appl. Phycol., 21, 569-574. crossref(new window)

54.
Horn, SJ, Aasen, IM, Ostgaard, K. 2000. Ethanol production from seaweed extract. J. Ind. Microbiol. Biot., 25, 249-254. crossref(new window)

55.
Lee, S-M, Lee, J-H. 2012. Ethanol fermentation for main sugar components of brown-algae using various yeasts. J. Ind. Eng. Chem., 18, 16-18. crossref(new window)

56.
Takeda, H, Yoneyama, F, Kawai, S, Hashimoto, W, Murata, K. 2011. Bioethanol production from marine biomass alginate by metabolically engineered bacteria. Energy Environ. Sci., 4, 2575-2581. crossref(new window)

57.
Hashimoto, W, Yamasaki, M, Itoh, T, Momma, K, Mikami, B, Murata, K. 2004. Super-channel in bacteria: Structural and functional aspects of a novel biosystem for the import and depolymerization of macromolecules. J. Biosci. Bioeng., 98, 399-413. crossref(new window)

58.
Enquist-Newman, M, Faust, AME, Bravo, DD, Santos, CNS, Raisner, RM, Hanel, A, Sarvabhowman, P, Le, C, Regitsky, DD, Cooper, SR, et al. 2014. Efficient ethanol production from brown macroalgae sugars by a synthetic yeast platform. Nature, 505, 239-243.

59.
Quain, DE, Boulton, CA. 1987. Growth and Metabolism of Mannitol by Strains of Saccharomyces cerevisiae. J. Gen. Microbio., 133, 1675-1684.

60.
Berrios-Rivera, SJ, Bennett, G. N., San, K. 2002. Metabolic Engineering of Escherichia coli: Increase of NADH Availability by Overexpressing an NAD+-Dependent Formate Dehydrogenase. Metab. Eng., 4, 217-229. crossref(new window)