JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Growth of flounder larvae, Paralichthys olivaceus using enriched rotifer fed with artificial microparticle diets
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Growth of flounder larvae, Paralichthys olivaceus using enriched rotifer fed with artificial microparticle diets
Cho, Kyung-Jin; Kim, Mi-Ryung; Park, Heum-Gi; Lim, Young Soo; Ra, Chae Hun; Kim, Sung-Koo;
  PDF(new window)
 Abstract
Three types of artificial microparticle diets were developed for rotifer (Brachionus plicatilis) enrichment. The efficacies of enrichment with the artificial diets were evaluated and compared to those with commercial enrichment diets on the growth and survival of flounder larvae. Total lipid content was highest in the rotifer enriched with oil capsule (40.5% in dry weight). The n-3 highly unsaturated fatty acid (n-3 HUFA) content was also highest in the rotifer fed with oil capsule (7.08% in dry weight). The flounder larvae fed on the rotifer enriched with oil capsule showed the highest growth compared to those fed on any other enriched rotifer (P<0.05). The survival ratio of flounder larvae fed on the rotifers enriched with oil capsule and emulsion oil were higher than those fed on any other enriched rotifer (P<0.05). From the feeding study, the growth and survival of flounder larvae were enhanced by feeding rotifer enriched with oil capsule compared to rotifer enriched with any other diets. The rotifer fed on oil capsule containing high contents of n-3 HUFA. Therefore, a significant relationship between the growth and survival of flounder larvae and the n-3 HUFA content of rotifer could be obtained.
 Keywords
Artificial microparticle diets;Oil capsule;Rotifer;Enrichment;Flounder larvae;
 Language
English
 Cited by
 References
1.
. Cahu, C., Zambonino Infante, J. 2001. Substitution of live food by formulated diets in marine fish larvae. Aquaculture. 200, 161-180. crossref(new window)

2.
Hwang, J. A., Kim, S. K. 1998. Artificial microparticle diets for culturing rotifer, Brachionus plicatilis. J. Fish. Sci. Tech. 1, 30-34.

3.
Hagiwara, A., Suga, K., Akazawa, A., Kotani, T., Sakakura, Y. 2007. Development of rotifer strains with useful traits for rearing fish larvae. Aquaculture. 268, 44-52. crossref(new window)

4.
Izquierdo, M. S., Arakawa, T., Takeuchi, T., Haroun, R., Watanabe, T. 1992. Effect of n-3 HUFA level in Artemia on growth of larval Japanese flounder (Paralichthys olivaceus). Aquaculture. 105, 73-82. crossref(new window)

5.
Koven, W. M., Tandler, A., Kissil, G. W., Sklan, D., Friezlander, O., Harel, M. 1990. The effect of dietary (n-3) polyunsaturated fatty acids on growth, survival and swim bladder development in Sparus aurata larvae. Aquaculture. 91, 131-141. crossref(new window)

6.
Koven, W. M., Tandler, A., Kissil, G. W., Sklan, D. 1992. The importance of n-3 highly unsaturated fatty acids for growth in larval Sparus aurata and their effect on survival, lipid composition and size distribution. Aquaculture. 104, 91-104. crossref(new window)

7.
Lubzens, E., Tandler, A., Minkoff, G. 1989. Rotifers as food in aquaculture. Hydrobiologia 186/187, 387-400. crossref(new window)

8.
Metcalfe, L. D., Schmitz, A. A. 1961. The rapid preparation of fatty acid esters for gas chromatographic analysis. Anal. Chem. 33, 363-364. crossref(new window)

9.
Ostrowski, A. C., Divakaran, S. 1990. Survival and bioconversion of n-3 fatty acids during early development of dolphin (Coryphaena hippurus) larvae fed oil-enriched rotifers. Aquaculture. 89, 273-285. crossref(new window)

10.
Onal, U., Langdon, C. 2000. Characterization of two microparticle types for delivery of food to altricial fish larvae. Aquac. Nutr. 6, 159-170. crossref(new window)

11.
Park, H. G., Lee, K. W., Lee, S. M., Kim, S. K., Kim, H. S. 1999. Change of fatty acids composition of rotifer according to enrichments and methods in the high density culture. J. Korean Fish. Soc. 32, 748-752.

12.
Retain, K. I., Rainuzzo, J. R., Oie, G., Olsen, Y. 1997. A review of the nutritional effects of algae in marine fish larvae. Aquaculture. 155, 207-221. crossref(new window)

13.
Rainuzzo, J. R., Retain, K. I., Olsen, Y. 1997. The significance of lipids at early stages of marine fish: a review. Aquaculture. 155, 103-155. crossref(new window)

14.
Salhi, M., Izquierdo, M. S., Hernandez-Cruz, C. M., Gonzalez, M., Fernandez-Palacios, H. 1994. Effect of lipid and n-3 HUFA levels in microdiets on growth, survival and fatty acid composition of larval gilthead seabream (Sparus aurata). Aquaculture. 124, 275-282. crossref(new window)

15.
Sargent, J., McEvoy, L., Estevez, A., Bell, G., Bell, M., Henderson, J., Tocher, D. 1999. Lipid nutirtion of marine fish during early development: current status and future directions. Aquaculture. 179, 217-229. crossref(new window)

16.
Watanabe, T., Kiron, U. 1994. Review: Prospects in larval fish dietetics. Aquaculture. 124, 223-251. crossref(new window)

17.
Yoshimatsu, T., Imoto, H., Hayashi, M., Yoshimura, K. 1997. Preliminary results in improving essential fatty acids enrichment of rotifer cultured in high density. Hydrobiologia. 358, 153-157. crossref(new window)