Advanced SearchSearch Tips
Influence of Organic Carbon Sources on Growth and Lipid Content of Marine Green Alga Dunaliella tertiolecta
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Influence of Organic Carbon Sources on Growth and Lipid Content of Marine Green Alga Dunaliella tertiolecta
Rizwan, Muhammad; Mujtaba, Ghulam; Lee, Kisay;
  PDF(new window)
This study investigated the potential use of various organic carbon sources (glucose, glycerol and acetate) and different concentrations of for culturing marine microalga Dunaliella tertiolecta. Cell growth and lipid production were monitored under heterotrophic, mixotrophic and photoautotrophic modes of cultivation. D. tertiolecta showed the ability to grow under mixotrophic (acetate and glucose), heterotrophic (glucose) and photoautotrophic condition under high concentration (15%). With all the organic carbon sources (glucose, glycerol and acetate) tested in this study, 1~5% acetate enhanced cell growth rate and lipid content, while higher concentrations of acetate (10% and 15%) were inhibitory and resulted in cell death.
Dunaliella tertiolecta;organic carbons;mixotrophic;heterotrophic;lipid;
 Cited by
APHA, 1995. Standard Methods for the Examination of Water and Wastewater, 19th ed. APHA, Washington, DC.

Arroussi, H. El, R. Benhima, I. Bennis, N. El Mernissi, and I. Wahby. 2015. Improvement of the potential of Dunaliella tertiolecta as a source of biodiesel by auxin treatment coupled to salt stress. Renew. Energy 77, 15-19. crossref(new window)

Bligh, E.G. and W.J. Dyer. 1959. A rapid method of total lipid extraction and purification Can. J. Biochem. Physiol. 37, 911-917. crossref(new window)

Bouarab, L., A. Dautab, and M. Loudiki. 2004. Heterotrophic and mixotrophic growth of Micractinium pusillum fresenius in the presence of acetate and glucose: Effect of light and acetate gradient concentration. Water Res. 38, 2706-2712. crossref(new window)

Chen, F. and M. Johns. 1991. Effect of C/N ratio and aeration on the fatty acid composition of heterotrophic Chlorella sorokiniana. J. Appl. Phycol. 3, 203-209. crossref(new window)

Chen, F. and M. Johns. 1995. A strategy for high cell density culture of heterotrophic microalgae with inhibitory substrates. J. Appl. Phycol. 7, 43-46. crossref(new window)

Chen, M., H. Tang, H. Ma, T.C. Holland, K.Y. Simon Ng, and S.O. Salley. 2011. Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta. Bioresour. Technol. 102, 1649-1655. crossref(new window)

Chen, Y.H. and T.H. Walker. 2011. Biomass and lipid production of heterotrophic microalgae Chlorella protothecoides by using biodiesel-derived crude glycerol. Biotechnol. Lett. 33, 1973-1983. crossref(new window)

Chi, Z.P., D. Pyle, Z. Wen, C. Frear, and S. Chen. 2007. A laboratory study of producing docosahexaenoic acid from biodiesel-waste glycerol by microalgal fermentation. Process Biochem. 42, 1537-1545. crossref(new window)

Degrenne, B., J. Pruvost, G. Christophe, J. Cornet, G. Cogne, and J. Legrand. 2010. Investigation of the combined effects of acetate and photobioreactor illuminated fraction in the induction of anoxia for hydrogen production by Chlamydomonas reinhardtii. Int. J. Hydrogen Energy 35 (19), 10741-10749. crossref(new window)

Guillard. R.R.L. 1975. Culture of phytoplankton for feeding marine invertebrates. In: Culture of Marine Invertebrate Animals, W.L. Smith and M.H. Chanley (eds.), Plenum, NY, pp. 29-60.

Gustavo, B. L., A.E.M. Abdelaziz, and P.C. Hallenbeck. 2013. Algal biofuels: Challenges and opportunities. Bioresour. Technol. 145, 134-141. crossref(new window)

Hagen, C., K. Grunewald, M. Xylander, and E. Rothe. 2001. Effect of cultivation parameters on growth and pigment biosynthesis in flagellated cells of Haematococcus pluvialis. J. Appl. Phycol. 13 (1), 79-87. crossref(new window)

Haiying, T., N. Abunasser, M.E.D. Garcia, M. Chen, K.Y. Simon Ng, and S.O. Salley. 2011. Potential of microalgae oil from Dunaliella tertiolecta as a feedstock for biodiesel. Appl. Energy 88, 3324-3330. crossref(new window)

Heredia, A.T., W. Wei, and B. Hu. 2010. Oil accumulation via heterotrophic/mixotrophic Chlorella protothecoides. Appl. Biochem. Biotechnol. 162 ,1978-1995. crossref(new window)

Heredia, A.T., W. Wei, R. Ruan, and B. Hu. 2011. Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from non-sugar materials. Biomass Bioenergy 5, 2-10.

Jeon, Y., C. Cho, and Y. Yun. 2006. Combined effects of light intensity and acetate concentration on the growth of unicellular microalga Haematococcus pluvialis. Enz. Microb. Technol. 39, 490-495. crossref(new window)

Jun, I.H., I. Ohba, K. Tada, M. Kobayashi, T. Kanno, and M. Kishimoto. 2003. Effective cell harvesting of the halotolerant microalga Dunaliella tertiolecta with pH control. J. Biosci. Bioeng. 95, 412-415. crossref(new window)

Katarzyna, C. and N. Andrzej. 2004. Evaluation of Spirulina sp. growth in photoautotrophic, heterotrophic and mixotrophic cultures. Enzyme. Microb. Technol. 34, 461-465 crossref(new window)

Li, X., H. Xu, and Q. Wu. 2007. Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnol. Bioeng. 98, 764-771. crossref(new window)

Liang, Y.N., N. Sarkany, and Y. Cui. 2009. Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol. Lett. 31, 1043-1049. crossref(new window)

Mandal, S. and N. Mallick. 2009. Microalga Scenedesmus obliquus as a potential source for biodiesel production. Appl. Microbiol. Biotechnol. 84, 281-291. crossref(new window)

Kim, G., G. Mujtaba, M. Rizwan, and K. Lee. 2014. Environmental stress strategies for stimulating lipid production from microalgae for biodiesel. Appl. Chem. Eng. 25, 553-558. crossref(new window)

Narayan, M.S., G.P. Manoj, K. Vatchravelu, N. Bhagyalakshmi, and M. Mahadevaswamy. 2005. Utilization of glycerol as carbon source on the growth, pigment and lipid production in Spirulina platensis. Int. J. Food. Sci. Nutr. 56, 521-528. crossref(new window)

Ogbonna, J.C., E. Ichige, H. Tanaka. 2002. Interactions between photoautotrophic and heterotrophic metabolism in photoheterotrophic cultures of Euglena gracilis. Appl. Microbiol. Biotechnol. 58, 532-538. crossref(new window)

Perez-Garcia, O., F.M.E. Escalante, L.E. de-Bashan, and Y. Bashan. 2011. Heterotrophic cultures of microalgae: Metabolism and potential products, Water Res. 45, 11-36. crossref(new window)

Pyle, D.J., R.A. Garcia, Z.Y. Wen. 2008. Producing docosahexaenoic acid (DHA)-rich algae from biodieselderived crude glycerol: effects of impurities on DHA production and algal biomass composition. J. Agric. Food. Chem. 56, 3933-3939. crossref(new window)

Quiao, H. and G. Wang. 2009. Effect of carbon source on growth and lipid accumulation in Chlorella sorokiniana GXNN01. Chinese J. Oceanol. Limnol., 27, 762-768. crossref(new window)

Rashmi. C., M.V. Rohit, Y.V. Swamy, and S. V. Moha. 2014. Regulatory function of organic carbon supplementation on biodiesel production during growth and nutrient stress phases of mixotrophic microalgae cultivation. Bioresour. Technol. 165, 279-287. crossref(new window)

Santiago, D., H.F. Jin, and K. Lee. 2010. The influence of ferrous-complexed EDTA as a solubilization and its auto-regeneration on the removal of nitric oxide gas through the culture of microalga Scenedesmus sp. Process Biochem. 45, 1949-1953. crossref(new window)

Schenk, P., S. Thomas, E. Stephens, U. Marx, J. Mussgnug, C. Posten, O. Kruse, and B. Hankamer. 2008. Second generation biofuels: High-efficiency microalgae for biodiesel production. Bioenergy Res. 1, 20-43. crossref(new window)

Suzuki, T., T. Matsuo, K. Ohtaguchi, and K. Koide. 1995. Gas-sparged bioreactors for $CO_2$ fixation by Dunaliella tertiolecta. J. Chem. Technol. Biotechnol. 62, 351-358. crossref(new window)

Takagi, M. and Y.T Karseno. 2006. Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. J Biosci. Bioeng. 101, 223-226. crossref(new window)

Thompson, J.C. and B. He, 2006. Characterization of crude glycerol from biodiesel production from multiple feedstocks. Appl. Eng. Agric. 22, 261-265. crossref(new window)

Wei, A.L., X.W. Zhang, D. Wei, G. Chen, Q.Y. Wu, and S.T. Yang. 2009. Effects of cassava starch hydrolysate on cell growth and lipid accumulation of the heterotrophic microalgae Chlorella protothecoides. J. Ind. Microbiol. Biotechnol. 6, 1383-1389.

Xiaoling, M. and Q. Wu. 2006. Biodiesel production from heterotrophic microalgal oil, Bioresour. Technol. 97, 841-846. crossref(new window)

Yamane, Y., T. Utsunomiya, M. Watanabe, K. Sasaki. 2011. Biomass production in mixotrophic culture of Euglena gracilis under acidic condition and its growth energetics. Biotechnol. Lett. 23, 1223-1228.

Yanna, L., N. Sarkany, Y.Cui, J.W. Blackburn. 2010. Batch stage study of lipid production from crude glycerol derived from yellow grease or animal fats through microalgal fermentation. Bioresour. Technol. 101, 6745-6750. crossref(new window)

Zhang, W., P. Zhang, H. Sun, M. Chen, S. Lu, and P. Li. 2014. Effects of various organic carbon sources on the growth and biochemical composition of Chlorella pyrenoidosa, Bioresour. Technol. 174, 52-58.