Advanced SearchSearch Tips
Characterization of an antioxidant peptide from katsuobushi (dried bonito) protein hydrolysates
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Characterization of an antioxidant peptide from katsuobushi (dried bonito) protein hydrolysates
Lee, Jung Kwon; Jeon, Joong-Kyun; Byun, Hee-Guk;
  PDF(new window)
The objective of the current study was to evaluate the inhibitory and antioxidant activities of powdered katsuobushi (dried bonito) protein hydrolysates and their corresponding fractions. The powdered katsuobushi (dried bonito) hydrolysates were obtained by enzymatic hydrolysis using Alcalase, -chymotrypsin, Neutrase, pepsin, papain, and trypsin. The antioxidant efficacy of the respective hydrolysates were evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl, superoxide, and alkyl radical-scavenging activities. Among the hydrolysates, the peptic-derived hydrolysate exhibited the highest antioxidant activity compared to other enzymatic hydrolysates. Therefore, the peptic-derived hydrolysate was further analyzed, and was found to contain an active peptide with an amino acid sequence identified as Pro-Met-Pro-Leu-Asn-Ser-Cys (756 Da). The purified peptides from powdered katsuobushi (dried bonito) had an value of , and exhibited an inhibitory effect against DNA oxidation induced by hydroxyl radicals. Taken together, these results suggests that powdered katsuobushi (dried bonito) could be used as a natural antioxidant in functional foods and prevent oxidation reactions in food processing.
Antioxidant;DPPH radical scavenging;Peptide;Electron spin resonance spectrometry;Powdered katsuobushi (dried bonito);
 Cited by
Castro, L. and Freeman, B.A. 2001. Reactive oxygen species in human health and disease. Nutrition 170, 161-5.

Lin, C.C. and Liang, J.H. 2002. Effect of antioxidants on the oxidative stability of chicken breast meat in a dispersion system. J. Food Science. 67, 530-533. crossref(new window)

Gimenez, B., Aleman, A., Montero, P. and Gomez-Guillen, M.C. 2009. Antioxidant and functional properties of gelatin hydrolysates obtained from skin of sole and squid. Food Chem 114, 976-983. crossref(new window)

Bougatef, A., Nedjar-Arroume, N., Manni, L., Ravallec, R., Barkia, A., Guillochon, D. and Nasri, M. 2010. Purification and identification of novel antioxidant peptides from enzymatic hydrolysates of sardinelle (Sardinella aurita) by-products proteins. Food Chem. 118, 559-565. crossref(new window)

Halliwell, B. 2002. Effect of diet on cancer development: is oxidative DNA damage a biomarker. Free Radical Bio. Med. 32, 968-974. crossref(new window)

Stadtman, E.R. 2006. Protein oxidation and aging. Free Radical Res. 40, 1250-1258.

McCord, J.M. 1993. Human disease. free radicals, and the oxidant/antioxidant balance. Clin Biochem. 26, 351-357. crossref(new window)

Somani, S.M. and Rybak, L.P. 1996. Comparative effects of exercise training on transcription of antioxidant enzyme and the activity in old rat heart. Ind. J. Physiol. Pharmacol. 40, 205-212.

Wanita, A. and Lorenz, K. 1996. Antioxidant potential of 5-npentadecylresorcinol. J. Food. Process. Pres. 20, 410-429.

Becker, G.L. 1993. Preserving food and health: Antioxidants make functional, nutritious preservatives. Food Processing(Chicago). 12, 54-56.

Clemente, A. 2000. Enzymatic protein hydrolysates in human nutrition. Trends Food Sci. Technol. 11, 254-62. crossref(new window)

Ko, J.Y., Lee, J.H., Samarakoon, K., Kim, J.S. and Jeon, Y.J. 2013. Purification and determination of two novel antioxidant peptides from flounder fish (Paralichthys olivaceus) using digestive proteases. Food Chem. Toxicol. 52, 113-120. crossref(new window)

Luo, H.Y., Wang, B., Li, Z.R., Chi, C.F., Zhang, Q.H. and He, G.Y. 2013. Preparation and evaluation of antioxidant peptide from papain hydrolysate of Sphyrna lewini muscle protein. LWT-Food Sci Technol. 51, 281-288. crossref(new window)

Wang, B., Li, L., Chi, C. F., Ma, J. H., Luo, H. Y. and Xu, Y. F. 2013. Purification and characterisation of a novel antioxidant peptide derived from blue mussel (Mytilus edulis) protein hydrolysate. Food Chem. 138, 1713-1719. crossref(new window)

Ko, S.C., Kim, D.K. and Jeon, Y.J. 2012. Protective effect of a novel antioxidative peptide purified from a marine Chlorella ellipsoidea protein against free radical-induced oxidative stress. Food Chem. Toxicol. 50, 2294-2302. crossref(new window)

Zhong, S., Ma, C., Lin, Y. C. and Luo, Y. 2011. Antioxidant properties of peptide fractions from silver carp (Hypophthalmichthys molitrix) processing by-product protein hydrolysates evaluated by electron spin resonance spectrometry. Food Chem. 126, 1636-1642. crossref(new window)

Lee, W.S., Jeon, J.K. and Byun, H.G. 2011. Characterization of a novel antioxidative peptide from the sand eel Hypoptychus dybowskii. Process Biochem. 46, 1207-1211. crossref(new window)

Byun, H.G., Lee, J.K., Park, H.G., Jeon, J.K. and Kim, S.K. 2009. Antioxidant peptides isolated from the marine rotifer, Brachionus rotundiformis. Process Biochem. 44, 842-846. crossref(new window)

Korhonen, M., Pihlanto-Leppala, A. and Tupasela, T. 1998. Impact of processing on bioactive proteins and peptides. Trends Food Sci. Tech. 9, 307-319. crossref(new window)

Himaya, S.W.A., Ngo, D.H., Ryu, B.M. and Kim, S.K. 2012. An active peptide purified from gastrointestinal enzyme hydrolysate of Pacific cod skin gelatin attenuates angiotensin-1 converting enzyme (ACE) activity and cellular oxidative stress. Food Chem. 132, 1872-1882. crossref(new window)

Yajima, M., Nakamura, H., Sakakibara, T., Yanai, K. and Hayashi. 1981. Volatile flavour components of dried bonito (katsuobushi). I. On basic, acidic and weak acidic fractions. Agr. Biol. Chem. 45, 2761-2768. crossref(new window)

Yajima, M., Nakamura, H., Sakakibara, J., Ide, T., Yanai, K. and Hayashi. 1983. Volatile flavour components of dried bonito (katsuobushi). II. From neutral fraction. Agr. Biol. Chem. 47, 1755-1760. crossref(new window)

Nanjo, F., Goto, K., Seto, R., Suzuki, M., Sakai, M. and Hara, Y. 1996. Scavenging effects of tea catechins and their derivatives on 1,1,-diphenyl-2-picrylhydrazyl radical. Free Radic. Biol. Med. 21, 895-902. crossref(new window)

Rosen, G.M. and Rauckman, E.J. 1984. Spin trapping of superoxide and hydroxyl radicals. Method Enzymol. 105, 198-209. crossref(new window)

Guo, Q., Zhao, B., Shen, S., Hou, J., Hu, J. and Xin, W.. 1999. ESR study on the structure-antioxidant activity relationship of tea catechins and their epimers. Biochimica et Biophysica Acta (BBA)-General Subjects. 1427, 13-23. crossref(new window)

Hiramoto, K., Johkoh, H., Sako, K.I. and Kikugawa, K. 1993. DNA breaking activity of the carbon-centered radical generated from 2,2-azobis (2-amidinopropane) hydrochloride (AAPH). Free Radic. Res. 19, 323-332. crossref(new window)

Pihlanto, L. 2000. Bioactive peptides derived from bovine whey proteins: Opioid and ace-inhibitory. Trends Food. Sci. Tech. 11, 347-356. crossref(new window)

Li, B., Chen, F., Wang, X., Ji, B. and Wu, Y. 2007. Isolation and identification of antioxidative peptides from porcine collagen hydrolysate by consecutive chromatography and electrospray ionization-mass spectrometry. Food Chem. 102, 1135-43. crossref(new window)

Hsu, K. (2010). Purification of antioxidative peptides prepared from enzymatic hydrolysates of tuna dark muscle by-product. Food Chem. 122, 42-48. crossref(new window)

Je, J.Y., Qian, Z., Byun, H.G. and Kim, S.K. 2007. Purification and characterization of an antioxidant peptide obtained from tuna backbone protein by enzymatic hydrolysis. Process Biochem. 42, 840-846. crossref(new window)

Elias, R.J., Kellerby, S.S. and Decker, E.A. 2008. Antioxidant activity of proteins and peptides. Crit. Rev. Food Sci. Nutr. 48, 430-441. crossref(new window)

Davalos, A., Miguel, M., Bartolome, B. and Lopez-Fandino, R. 2004. Antioxidant activity of peptides derived from egg white proteins by enzymatic hydrolysis. J. Food Protect. 67, 1939-1944. crossref(new window)

Murase, H., Nagao, A. and Terao, J. 1993. Antioxidant and emulsifying activity of N-(longchain-acyl) histidine and N-(long-chain-acyl) carnosine. J. Agric. Food Chem. 41, 1601-1604. crossref(new window)

Ngo, D.N., Lee, S.H., Kim, M.M. and Kim, S.K. 2009. Production of chitin oligosaccharides with different molecular weights and their antioxidant effect in RAW 264.7 cells. J Funct. Foods. 1, 188-198. crossref(new window)

Martinez, G.R., Loureiro, A.P., Marques, S.A., Miyamoto, S., Yamaguchi, L.F. and Onuki, J. 2003. Oxidative and alkylating damage in DNA. Mutat. Res. 554, 115-127.