Advanced SearchSearch Tips
Prediction of Hypoxia-inducible Factor Binding Site in Whale Genome and Analysis of Target Genes Regulated by Predicted Sites
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Prediction of Hypoxia-inducible Factor Binding Site in Whale Genome and Analysis of Target Genes Regulated by Predicted Sites
Yim, Hyung-Soon; Lee, Jae-Hak;
  PDF(new window)
Whales are marine mammals that are fully adapted to aquatic environment. Whales breathe by lungs so they require adaptive system to low oxygen concentration (hypoxia) while deep and prolonged diving. However, the study for the molecular mechanism underlying cetacean adaptation to hypoxia has been limited. Hypoxia-inducible factor (HIF) is the central transcription factor that regulates hypoxia-related gene expression. Here we identified HIF-binding sites in whale genome by phylogenetic footprinting and analyzed HIF-target genes to understand how whales cope with hypoxia. By comparison with the HIF-target genes of terrestrial mammals, it was suggested that whales may retain unique adaptation mechanisms to hypoxia.
whale;hypoxia;HIF (hypoxia-inducible factor);HIF-target gene;adaptation mechanism;
 Cited by
Crighton, D., Wilkinson, S., O'Prey, J., Syed, N., Smith, P., Harrison, P..R, Gasco, M., Garrone, O., Crook, T. and Ryan, K. M. 2006. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell, 126, 121-134. crossref(new window)

Elnitski, L., Jin, V. X., Farnham, P. J. and Jones, S. J. 2006. Locating mammalian transcription factor binding sites: a survey of computational and experimental techniques. Genome Res. 16, 1455-1464. crossref(new window)

Feliubadalo, L., Arbones, M. L., Manas, S., Chillaron, J., Visa, J., Rodes, M., Rousaud, F., Zorzano, A., Palacin, M. and Nunes, V. 2003. Slc7a9-deficient mice develop cystinuria non-I and cystine urolithiasis. Hum. Mol. Genet. 12, 2097-2108. crossref(new window)

Goodyer, P., Boutros, M. and Rozen, R. 2000. The molecular basis of cystinuria: an update. Exp. Nephrol. 8, 123-127. crossref(new window)

Hochachka, P. W., Owen, T. G., Allen, J. F. and Whittow, G. C. 1975. Multiple end products of anaerobiosis in diving vertebrates. Comp. Biochem. Physiol. B. 50, 17-22. crossref(new window)

Lee, J., Giordano, S. and Zhang, J. 2012. Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem. J. 441 523-540. crossref(new window)

Mirceta S., Signore A.V., Burns J.M., Cossins A.R., Campbell K.L. and Berenbrink M. 2013. Evolution of mammalian diving capacity traced by myoglobin net surface charge. Science. 340, 1234192. doi:10.1126/science.1234192. crossref(new window)

Ortiz-Barahona, A., Villar, D., Pescador, N., Amigo, J. and del Peso, L. 2010. Genome-wide identification of hypoxia-inducible factor binding sites and target genes by a probabilistic model integrating transcription- profiling data and in silico binding site prediction. Nucleic Acids Res. 38, 2332-2345. crossref(new window)

Potthoff, M. J. and Olson, E. N. 2007. MEF2: a central regulator of diverse developmental programs. Development. 134, 4131-4140. crossref(new window)

Semenza, G. L. 2012. Hypoxia-inducible factors in physiology and medicine. Cell. 148, 399-408. crossref(new window)

Thewissen, J.G.M., Cooper, L.N., Clementz, M.T., Bajpai, S. and Tiwari, B.N. 2007. Whales originated from aquatic artiodactyls in the Eocene epoch of India. Nature. 450, 1190-1194. crossref(new window)

Thompson, W., Conlan, S., McCue, L. A. and Lawrence, C. E. 2007. Using the Gibbs Motif Sampler for phylogenetic footprinting. Methods Mol. Biol. 395, 403-424. crossref(new window)

Tonjes, A. and Kovacs, P. 2013. SGLT2: a potential target for the pharmacogenetics of Type 2 diabetes? Pharmacogenomics. 14, 825-833. crossref(new window)

Vallon, V., Platt, K. A., Cunard, R., Schroth, J., Whaley, J., Thomson, S. C., Koepsell, H. and Rieg, T. 2011. SGLT2 mediates glucose reabsorption in the early proximal tubule. J. Am. Soc. Nephrol. 22, 104-112. crossref(new window)

Watwood, S. L., Miller, P. J. O., Johnson, M., Madsen, P. T. and Tyack.P. L..2006. Deep-diving foraging behaviour of sperm whales (Physeter macrocephalus). J. Anim. Ecol. 75, 814-825. crossref(new window)

Wenger, R. H., Stiehl, D. P., and Camenisch, G. 2005. Integration of oxygen signaling at the consensus HRE. Sci STKE. 2005, re12.

Wittenberg J. B. 1970. Myoglobin-facilitated oxygen diffusion: role of myoglobin in oxygen entry into muscle. Physiol Rev. 50, 559-636. crossref(new window)

Yim H. S., Cho, Y.S., Guang, X., Kang, S. G., Jeong, J. Y., Cha, S. S., Oh, H. M., Lee, J. H., Yang, E. C., Kwon, K. K., Kim, Y. J., Kim, T. W., Kim, W., Jeon J. H., Kim, S. J., Choi, D. H., Jho, S., Kim, H. M., Ko, J., Kim, H., Shin, Y. A., Jung, H. J., Zheng, Y., Wang, Z., Chen, Y., Chen, M., Jiang, A., Li, E., Zhang, S., Hou, H., Kim, T. H., Yu, L., Liu, S., Ahn, K., Cooper, J., Park, S. G., Hong, C. P., Jin, W., Kim, H. S., Park, C., Lee, K., Chun, S., Morin, P. A., O'Brien, S. J., Lee, H., Kimura, J., Moon, D. Y., Manica, A., Edwards, J., Kim, B. C., Kim, S., Wang, J., Bhak, J., Lee, H. S. and Lee, J. H. 2014. Minke whale genome and aquatic adaptation in cetaceans. Nat. Genet. 46, 88-92 crossref(new window)