Advanced SearchSearch Tips
Seasonal Differences of Cultivable Bacterial Communities Associated with the Marine Sponge, Petrosia corticata, Collected from Jeju Island
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Seasonal Differences of Cultivable Bacterial Communities Associated with the Marine Sponge, Petrosia corticata, Collected from Jeju Island
Jeong, Jong-Bin; Park, Jin-Sook;
  PDF(new window)
The community structure of cultivable bacteria associated with the marine sponge, Petrosia corticata, collected from Jeju Island in summer (September) of 2012 and winter (January) of 2013, were compared by the PCR-ARDRA method. Bacterial strains were cultured for 4 days at on Zobell medium and marine agar medium. After PCR amplification of 16S rRNA gene of individual strains, the restriction enzymes MspI and HaeIII were used to make restriction patterns. As a result, 24 ARDRA patterns from the summer sponge and 20 ARDRA patterns from the winter sponge were obtained. The sequencing result of 1-3 selected strains from each pattern showed over 98% similarities with the known sequences from the public database. At the phylum level, the bacterial community structures of both sponges (summer and winter) were identical qualitatively and composed of 4 phyla : Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes. Alphaproteobacteria accounted for 42.5% of total in summer sponge and 25.2% in winter, decreasing in the winter sample. Gammaproteobacteria accounted for 27.5% of total in summer sponge and 35.2% in winter, increasing in the winter sample. At the genus and species level, summer sponge had more diverse bacterial communities than winter sponge. Actinobacteria, Bacteroidetes, and Firmicutes increased in the winter sample.
16S rRNA gene;ARDRA;Bacteria;Petrosia corticata;Sponge;
 Cited by
Cardenas, C. A., Bell, J. J., Davy, S. K., Hoggard, M., and Taylor, M. W. 2014. Influence of environmental variation on symbiotic bacterial communities of two temperate sponges. FEMS Microbiol. Ecol. 88, 516-527. crossref(new window)

Davis, J. W. and Sizemore, R. K. 1982. Incidence of Vibrio species associated with blue crabs (Callinectes sapidus) collected from Galveston Bay, Texas. Appl. Environ. Microbiol. 43, 1092-1097.

Erwin, P. M., Pita, L., Lopez-Legentil, S., and Turon, X. 2012. Stability of sponge-associated bacteria over large seasonal shifts in temperature and irradiance. Appl. Environ. Microbiol. 78, 7358-7368. crossref(new window)

Imhoff, J. F. and Stohr, R. 2003. Sponge-associated bacteria: general overview and special aspects of bacteria associated with Halichondria panicea. In Sponges (Porifera). Springer Berlin Heidelberg. 37, 35-57. crossref(new window)

Jeong, I. H. and Park, J. S. 2012. Phylogenetic analysis of bacterial diversity in the marine sponge, Asteropus simplex, collected from Jeju island. Korean J. Microbiol. 48, 275-283. crossref(new window)

Jeong, J. B. and Park, J. S. 2012. Seasonal differences of bacterial communities associated with the marine sponge, Hymeniacidon sinapium. Korean J. Microbiol. 48, 262-269. crossref(new window)

Kim, J. S., Lim, Y. J., Im, K. S., Jung, J. H., Shim, C. J., Lee, C. O., Hong, J., and Lee, H. 1999. Cytotoxic polyacetylenes from the marine sponge Petrosia sp. J. Nat. Prod. 62, 554-559. crossref(new window)

Lee, Y. K., Lee, J. H., and Lee, H. K. 2001. Microbial symbiosis in marine sponges. J. Microbiol. 39, 254-264.

Li, H. Y., Matsunaga, S., and Fusetani, N. 1994. Corticatic acids A-C, antifungal acetylenic acids from the marine sponge, Petrosia corticata. J. Nat. Prod. 57, 1464-1467. crossref(new window)

Li, Z., Hu, Y., Liu, Y., Huang, Y., He, L., and Miao, X. 2007. 16S rDNA clone library-based bacterial phylogenetic diversity associated with three South China Sea sponges. World J. Microbiol. Biotechnol. 23, 1265-1272. crossref(new window)

Lim, Y. J., Park, H. S., Im, K. S., Lee, C. O., Hong, J., Lee, M. Y., Kim, D. K., and Jung, J. H. 2001. Additional cytotoxic polyacetylenes from the marine sponge Petrosia species. J. Nat. Prod. 64, 46-53. crossref(new window)

Montalvo, N. F., Davis, J., Vicente, J., Pittiglio, R., Ravel, J., and Hill, R. T. 2014. Integration of culture- based and molecular analysis of a complex sponge-associated bacterial community. PloS one. 9, e90517. crossref(new window)

Nishimura, S., Matsunaga, S., Shibazaki, M., Suzuki, K., Harada, N., Naoki, H., and Fusetani, N. 2002. Corticatic acids D and E, polyacetylenic geranylgeranyl transferase type I inhibitors, from the marine sponge Petrosia corticata. J. Nat. Prod. 65, 1353-1356. crossref(new window)

Noda, A., Sakai, E., Kato, H., Losung, F., Mangindaan, R. E., de Voogd, N. J., Yokosawa, H., and Tsukamoto, S. 2015. Strongylophorines, meroditerpenoids from the marine sponge Petrosia corticata, function as proteasome inhibitors. Bioorg. Med. Chem. Lett. 25, 2650-2653. crossref(new window)

Rodrigues, D. F., da C Jesus, E., Ayala-del-Rio, H. L., Pellizari, V. H., Gilichinsky, D., Sepulveda-Torres, L., and Tiedje, J. M. 2009. Biogeography of two cold-adapted genera: Psychrobacter and Exiguobacterium. ISME. J. 3, 658-665. crossref(new window)

Santos, O. C. S., Soares, A. R., Machado, F. L. S., Romanos, M. T. V., Muricy, G., Giambiagi‐deMarval, M., and Laport, M. S. 2015. Investigation of biotechnological potential of sponge‐associated bacteria collected in Brazilian coast. Lett. Appl. Microbiol. 60, 140-147. crossref(new window)

Sasaki, S., Tozawa, T., Van Wagoner, R. M., Ireland, C. M., Harper, M. K., and Satoh, T. 2011. Strongylophorine-8, a pro-electrophilic compound from the marine sponge Petrosia (Strongylophora) corticata, provides neuroprotection through Nrf2/ARE pathway. Biochem. Biophys. Res. Commun. 415, 6-10. crossref(new window)

Sun, W., Zhang, F., He, L., Karthik, L., and Li, Z. 2015. Actinomycetes from the South China Sea sponges: isolation, diversity, and potential for aromatic polyketides discovery. Front. Microbiol. 6, doi: 10.3389/fmicb.2015.01048 crossref(new window)

Takada, K., Okada, S., and Matsunaga, S. 2014. Structural reappraisal of corticatic acids, biologically active linear polyacetylenes, from a marine sponge of the genus Petrosia. Fish. Sci. 80, 1057-1064. crossref(new window)

Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725-2729. crossref(new window)

Taylor, M. W., Schupp, P. J., De Nys, R., Kjelleberg, S., and Steinberg, P. D. 2005. Biogeography of bacteria associated with the marine sponge Cymbastela concentrica. Environ. Microbiol. 7, 419-433. crossref(new window)

Thoms, C., Horn, M., Wagner, M., Hentschel, U., and Proksch, P. 2003. Monitoring microbial diversity and natural product profiles of the sponge Aplysina cavernicola following transplantation. Mar. Biol. 142, 685-692. crossref(new window)

Thompson, J. D., Higgins, D. G., and Gibson, T. J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680. crossref(new window)

Wang, G. 2006. Diversity and biotechnological potential of the sponge-associated microbial consortia. J. Ind. Microbiol. Biotechnol. 33, 545-551. crossref(new window)

Webster, N. S., Cobb, R. E., and Negri, A. P. 2008. Temperature thresholds for bacterial symbiosis with a sponge. ISME J. 2, 830-842. crossref(new window)

Webster, N. S., Negri, A. P., Munro, M. M., and Battershill, C. N. 2004. Diverse microbial communities inhabit Antarctic sponges. Environ. Microbiol. 6, 288-300. crossref(new window)

White, J. R., Patel, J., Ottesen, A., Arce, G., Blackwelder, P., and Lopez, J. V. 2012. Pyrosequencing of bacterial symbionts within Axinella corrugata sponges: diversity and seasonal variability. PLoS One. 7, e38204. crossref(new window)

Yoon, B. J. and Oh, D. C. 2012. Spongiibacterium flavum gen. nov., sp. nov., a member of the family Flavobacteriaceae isolated from the marine sponge Halichondria oshoro, and emended descriptions of the genera Croceitalea and Flagellimonas. Int. J. Syst. Evol. Microbiol. 62, 1158-1164. crossref(new window)