Advanced SearchSearch Tips
Hybridal Method for the Prediction of Wave Instabilities Inherent in High Energy-Density Combustors (2): Cumulative Effects of Pressure Coupled Responses on Cavity Acoustics
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Hybridal Method for the Prediction of Wave Instabilities Inherent in High Energy-Density Combustors (2): Cumulative Effects of Pressure Coupled Responses on Cavity Acoustics
Lee, Gil-Yong; Yoon, Woong-Sup;
  PDF(new window)
Theoretical-numerical approach of combustion instability in a specific rocket engine is conducted with parametric response functions. Fluctuating instantaneous burning rate is assumed to be functionally coupled with acoustic pressures and have a finite or time-varying amplitudes and phase lags. Only when the amplitudes and phases of combustion response function are sufficiently large and small respectively, the triggered unstable waves are amplified.
Hybrid Model;Acoustic Instability;Combustion Response Function;
 Cited by
G.Y. Lee and W.S. Yoon, 2000, 'High Frequency Wave Instability and Combustion Responses', AIAA-2000-3296

W.S. Yoon and G..Y. Lee, 2001, 'Direct Prediction of Unstable Waves in Combustion Chamber', AIAA-2001-3848

G.Y. Lee and W.S. Yoon, 2002, 'Direct Prediction of Liquid Rocket Combustion Instabilities with Emphasis Placed on Velocity- and Pressure-Coupled Reponses', AIAA-2002-3698

Priem, R., and Heidmann, M., 1960, 'Propellant Vaporization at a Design Criterion for Rocket-Engine Combustion Chambers', Tech. Rept., NASA TR-67

Culick, F.E.C., 1988, 'Combustion Instabilities in Liquid-Fueled Propulsion System-An Overview', AGARD Conference Proceedings No. 450

Habiballah, M., and Dubois, I., 1993, 'Numerical Analysis of Engine Instability', First International Symposium on Liquid Rocket Combustion Instability, Pennsylvania State Univ., University Park, PA, Jan. 18-20

Culick, F.E.C., and Yang, V., 1992, 'Prediction on the Stability of Unsteady Motions in Solid-Propellant Rocket Motors', Nonsteady Burning and Combustion Stability of Solid Propellants, edited by L. DeLuca, E.W. Price, and M. Summerfield, Vol. 143, Progress in Astronautics and Aeronautics, AIAA, Washington, DC, pp. 719-779

Priem, R.J., and Guentert, DC, 1962, 'Combustion Instability Limits Determined by a Nonlinear Theory and a One-Dimensional Model', NASA-TN-D-1409

Nickerson, G.R., Culick, F.E.C., and Dang, L.G., 1983, 'Standard Stability Prediction Method for Solid Rocket Motors', Software and Engineering Associates, IDC, AFRPL TR-83-017, Carson City, NV

Liang, P., and Ungewitter, R., 1992, 'Multi-Phase Simulations of Coaxial Injector Combustion', 30th Aerospace Sciences Meeting, AIAA Paper 92-0345, Reno, NV

Heidmann, M.F., and Wieber, P.R., 1966, 'Analysis of n-Heptane Vaporization in Unstable Combustor with Traveling Transverse Oscillation', NASA TN D-3424

Crocco, L, Harrje, D.T., and Sirignano, W.A. et al., 1967, 'Nonlinear Aspects of Combustion Instability in Liquid Propellant Rocket Motors', Princeton University, NASA CR 72270

Dykema, O.W., 1965, 'An Engineering Approach to Combustion Instability', Aerospace Corp. Rept. No. TDR-669(6126-22)-1

Strahle, W.C., 1965, 'Unsteady Laminar Jet Flame at Large Frequencies of Oscillation', AIAA J. Vol. 3, No.5, p. 957 crossref(new window)

Williams, F.A., 1965, 'Response of a Burning Fuel Plate to Sound Vibration', AIAA J. Vol. 3, p. 2112 crossref(new window)

Shuen, J.S., Yang, V., and Hsiao, C.C., 1992, 'Combustion of Liquid-Fuel Droplets in Supercritical Conditions', Combustion and Flame, Vol. 89, pp. 299 crossref(new window)

Hsieh, K.C., Shuen, J.S., and Yang, V., 1991, 'Droplet Vaporization in High-Pressure Environments. I : Near Critical Conditions', Comb. Sci. and Tech, Vol. 76, pp. 111-13 crossref(new window)

Hsiao, G.c., 1995, 'Supercritical Droplet Vaporization and Combustion in Quiescent and Forced-Convective Environments', Ph.D, Thesis, The Pennsylvania State University, University Park, PA

Lafon, P., Yang, V., and Habiballah, M., 1995, AIAA paper 95-2432

Culick, F.E.C., 1987, 'A Note on Rayleigh's Criterion', Combustion Science and Technology, Vol. 56, pp. 159-166 crossref(new window)