Advanced SearchSearch Tips
Flutter Characteristics ofAircraft Wing Considering Control Surface and Actuator Dynamics with Friction Nonlinearity
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Flutter Characteristics ofAircraft Wing Considering Control Surface and Actuator Dynamics with Friction Nonlinearity
Lee, Seung-Jun; Lee, In; Shin, Won-Ho;
  PDF(new window)
Whenever the hinge axis of aircraft wing rotates, its stiffness varies. Also, there are nonlinearities in the connection of the actuator and the hinge axis, and it is necessary to inspect the coupled effects between the actuator dynamics and the hinge nonlinearity. Nonlinear aeroelastic characteristics are investigated by using the iterative V-g method. Time domain analyses are also performed by using Karpel's minimum state approximation technique. The doublet hybrid method(DHM) is used to calculate the unsteady aerodynamic forces in subsonic regions. Structural nonlinearity located in the load links of the actuator is assumed to be friction. The friction nonlinearity of an actuator is identified by using the describing function technique. The nonlinear flutter analyses have shown that the flutter characteristics significantly depends on the structural nonlinearity as well as the dynamic stiffness of an actuator. Therefore, the dynamic stiffness of an actuator as well as the nonlinear effect of hinge axis are important factors to determine the flutter stability.
Dynamic Stiffness;Friction;Nonlinearity;Flutter;DHM;
 Cited by
Woolston, D. S., Runyan, H. W. and Andrews, R. E., 1957, 'Some Effects of System Nonlinearities in the Problem of Aircraft Flutter', NACA TN 3539

Laurenson, R. M. and R. M. Trn, 1980, 'Flutter Analysis of Missile Control Surfaces Containg Structural Nonlinearites', AlAA Journal, Vol. 18, No. 10, pp. 1245-1251

McIntosh, S. C., Reed R. K Jr. and Rodden, W. P., 1981, 'Experimental and Theoretical Study of Nonlinear Flutter', Journal of Aircraft, Vol. 18, No. 12, pp. 1057-1063 crossref(new window)

Karpel, M., 1982, 'Design for Active Flutter Suppression and Gust Alleviation Using State-Space Aeroelastic Modeling', Journal of Aircraft, Vol. 19, No.3, pp. 221-227 crossref(new window)

Conner, M. D., Tang, D. M., Dowell, E. H. and Virgin, L. N., 1997, 'Nonlinear Behavior of a Typical Airfoil Section with Control Surface Freeplay: A Numerical and Experimental Study', Journal of Fluids and Structures, Vol. 11, No.1, pp. 89-110 crossref(new window)

Bae, J. S., Yang, S. M. and Lee, I., 2002, 'Linear and Nonlinear Aeroelastic Analysis of a Fighter-type Wing with Control Surface', Journal of Aircraft, Vol. 39, No.4, pp. 697-708 crossref(new window)

Dulger, L. C. and Uyan, S., 1997, 'Modeling, Simulation and Control of a Four-Bar Mechanism with a Brushless Servo Motor', Mechatronics, Vol. 7, No.4, pp. 369-383 crossref(new window)

Torfs, D. and Schutter, J. D., 1995', Modeling and Control of a Flexible One-Link Robot Driven by a Velocity Controlled Actuator', Mechanical Systems and Signal Processing, Vol. 9, No.1, pp. 15-29 crossref(new window)

Ebrahimi, M. and Whalley, R., 2000, 'Analysis, Modeling and Simulation of Stiffness in Machine Tool Drives', Computers & Industrial Engineering, Vol. 38, No.1, pp. 93-105 crossref(new window)

Guesalaga, A., 2004, 'Modelling End-of-roll Dynamics in Positioning Servos,' Control Engineering Practice, Vol. 12, No.2, pp. 217-224 crossref(new window)

Tavakoli, M. S. and Houser, D. R., 1986, 'Optimum Profile Modifications for the Minimization of Static Transmission Errors of Spur Gears', ASME, Journal of Engineering for Industry, Vol. 108, No.1, pp. 86-9

Paek, S. K., and Lee, I, 'Flutter analysis for control surface of launch vehicle with dynamic stiffness', Computers & Structures, Vol. 60, No.4, pp. 593-599 crossref(new window)

Shin, W. H., 2007, 'Aeroservoelastic Analysis of Missile Fin Considering Structural Nonlinearity', Ph. D. Thesis, Department of Aerospace Engineering, Korea Advanced Institute of Science and Technology

Gelb A. and Vander Velde, W. E., 1968, 'Multiple-input describing functions and nonlinear system design', McGraw-Hill, Inc.