JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Supersonic Axisymmetric Minimum Length Nozzle Conception at High Temperature with Application for Air
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Supersonic Axisymmetric Minimum Length Nozzle Conception at High Temperature with Application for Air
Zebbiche, Toufik;
  PDF(new window)
 Abstract
When the stagnation temperature of a perfect gas increases, the specific heats and their ratio do not remain constant any more and start to vary with this temperature. The gas remains perfect; its state equation remains always valid, except, it is named in more by calorically imperfect gas. The aim of this work is to trace the profiles of the supersonic axisymmetric Minimum Length Nozzle to have a uniform and parallel flow at the exit section, when the stagnation temperature is taken into account, lower than the dissociation threshold of the molecules, and to have for each exit Mach number and stagnation temperature shape of nozzle. The method of characteristics is used with the algorithm of the second order finite differences method. The form of the nozzle has a point of deflection and an initial angle of expansion. The comparison is made with the calorically perfect gas. The application is for air.
 Keywords
Axisymmetric Minimum Length Nozzle;Prandtl Meyer Function; High Temperature;Numerical Integration;Finite Differences Method;Predictor Corrector Algorithm;Interpolation;Stretching Function;Straight Sonic Line;Calorically Imperfect Gas;Pressure Force;Mass of Nozzle;Relative Error;
 Language
English
 Cited by
 References
1.
Anderson J. D. Jr., 'Fundamentals of Aerodynamics, 'Mc Graw-Hill Book Company, New York, 1982

2.
Anderson J. D. Jr., 'Modern Compressible Flow: With Historical Perspective,'Mc Graw-Hill Book Company, New York, 1988

3.
Argrow B. M. and Emanuel G., 'Comparison of Minimum Length Nozzlesn,'J. Fluid Eng. September, Vol. 110, PP. 283-288, 1988 crossref(new window)

4.
Demidovitch B. and Maron I., 'Elements de calcul numerique, 'Edition MIR, Moscou, 1987

5.
Dumitrescu L. Z., 'Minimum Length Axisymmetric Laval Nozzles,'AIAA J. 13, 520-532, 1975 crossref(new window)

6.
Emanuel G., 'Gasdynamic: Theory and Application', New York, AIAA Educational Serie, 1986

7.
Fletcher C. A. J., 'Computational Techniques for Fluid Dynamics: Specific Techniques for Different Flow Categories,' Vol. II, Springer Verlag, Berlin, Heidelberg, 1988

8.
Oosthuisen P. H. and Carscallen W. F., 'Compressible Fluid Flow,'Mc Graw-Hill, New York, 1997

9.
Peterson C. R. and Hill P. G., 'Mechanics and Thermodynamics of Propulsion,'Addition-Wesley Publishing Company Inc, 1965

10.
Raltson A. and Rabinowitz A., 'A First Course in Numerical Analysis,' McGraw Hill Book Company, 1985

11.
Rao G. V. R., 'Contoured Rocket Nozzles,'Proc. gth Int. Astro-Fed. Congress, Amsterdam, 1958

12.
Mclain D. H., 'Drawing contours from arbitrary data points,' The Computer Journal, Vol. 17, PP. 318-324, 1974 crossref(new window)

13.
Zebbiche T. and Youbi Z., 'Fonction de Prandtl Meyer a Haute temperature, 'Conferences Internationales de la Mecanique Avancee, Boumerdes, Algerie, 30 Nov.-02 Dec. 2004

14.
Zebbiche T. and Youbi Z., 'Supersonic Flow Parameters at High Temperature. Application for Air in Nozzles,'DGLR-2005-256. German Aerospace Congress 2005, 26-29 Sep. 2005, Friendrichshafen, Germany

15.
Zebbiche T. and Youbi Z., 'Supersonic Plug Nozzle Design at High Temperature. Application for Air,'AIAA Paper 2006-0592. 44tn Aerospace Sciences Metting and Exhibit, 9-12 Jan. 2006, Reno Nevada, Reno Hilton, USA

16.
Zebbiche T. and Youbi Z., 'Design of Two-Dimensional Supersonic Minimum Length Nozzle at Higth Temperature. Application for Air, 'DGLR 2005-257. German Aerospace Congress 2005, 26-29 Sep. 2005, Friendrichshafen, Germany

17.
Zebbiche T., 'New Generalized Form of the Prandtl Meyer Function. Application for Air at High Temperature,' AIAA-2006-3674, 25th Applied Aerodynamics Conference, San Francisco, California, 5-8 Jun 2006

18.
Zucker R. D. and Bilbarz O., 'Fundamentals of Gasdynamics, 'John Wiley & Sons., New York 2002

19.
Zucro M. J. and Hoffman J. D., 'Gas Dynamics,'Vol. 1, Yol. 2, New York, Wiley, 1976

20.
Zebbiche, T., 'Stagnation Temperature Effect on the Prandtl Meyer Function,'AIAA Journal, Vol. 45, No. 4, 2007, pp. 952-954 crossref(new window)

21.
Zebbiche, T. and Youbi, Z., 'Effect of Stagnation Temperature on the Supersonic Flow Parameters with Application for Air in Nozzles,'KSAS International Journal, Vol., 7, $N{\circ}$ 1, May 2006, pp.13-26