JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Optimal Perilune Altitude of Lunar Landing Trajectory
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Optimal Perilune Altitude of Lunar Landing Trajectory
Cho, Dong-Hyun; Jeong, Bo-Young; Lee, Dong-Hun; Bang, Hyo-Choong;
  PDF(new window)
 Abstract
In general, the lunar landing stage can be divided into two distinct phases: de-orbit and descent, and the descent phase usually comprises two sub-phases: braking and approach. And many optimization problems of minimal energy are usually focused on descent phases. In these approaches, the energy of de-orbit burning is not considered. Therefore, a possible low perilune altitude can be chosen to save fuel for the descent phase. Perilune altitude is typically specified between 10 and 15km because of the mountainous lunar terrain and possible guidance errors. However, it requires more de-orbit burning energy for the lower perilune altitude. Therefore, in this paper, the perilune altitude of the intermediate orbit is also considered with optimal thrust programming for minimal energy. Furthermore, the perilune altitude and optimal thrust programming can be expressed by a function of the radius of a parking orbit by using continuation method and co-state estimator.
 Keywords
Lunar landing;Optimal trajectory;Perilune altitude;
 Language
English
 Cited by
1.
Sub-Phase를 고려한 달착륙선의 Descent/Ascent phase 최적 궤적 생성,조성진;민찬오;이대우;조겸래;

한국항공우주학회지, 2010. vol.38. 12, pp.1184-1194 crossref(new window)
2.
Development of Precise Lunar Orbit Propagator and Lunar Polar Orbiter's Lifetime Analysis,;;;;

Journal of Astronomy and Space Sciences, 2010. vol.27. 2, pp.97-106 crossref(new window)
3.
Analysis of Delta-V Losses During Lunar Capture Sequence Using Finite Thrust,;;;;;

Journal of Astronomy and Space Sciences, 2011. vol.28. 3, pp.203-216 crossref(new window)
4.
PID 제어기를 이용한 달착륙선의 powered descent phase 유도제어,조성진;민찬오;이대우;조겸래;

한국항공우주학회지, 2011. vol.39. 5, pp.408-415 crossref(new window)
5.
Analysis on Tracking Schedule and Measurements Characteristics for the Spacecraft on the Phase of Lunar Transfer and Capture,;;;;

Journal of Astronomy and Space Sciences, 2014. vol.31. 1, pp.51-61 crossref(new window)
1.
Optimal Lunar Landing Trajectory Design for Hybrid Engine, Mathematical Problems in Engineering, 2015, 2015, 1  crossref(new windwow)
2.
Lunar CubeSat Impact Trajectory Characteristics as a Function of Its Release Conditions, Mathematical Problems in Engineering, 2015, 2015, 1  crossref(new windwow)
3.
Analysis of Delta-V Losses During Lunar Capture Sequence Using Finite Thrust, Journal of Astronomy and Space Sciences, 2011, 28, 3, 203  crossref(new windwow)
4.
Optimal Trajectory Design of Descent/Ascent phase for a Lunar Lander With Considerable Sub-Phases, Journal of the Korean Society for Aeronautical & Space Sciences, 2010, 38, 12, 1184  crossref(new windwow)
5.
Development of Precise Lunar Orbit Propagator and Lunar Polar Orbiter's Lifetime Analysis, Journal of Astronomy and Space Sciences, 2010, 27, 2, 97  crossref(new windwow)
6.
Control of powered descent phase for a Lunar lander using PID controller, Journal of the Korean Society for Aeronautical & Space Sciences, 2011, 39, 5, 408  crossref(new windwow)
7.
Analysis on Tracking Schedule and Measurements Characteristics for the Spacecraft on the Phase of Lunar Transfer and Capture, Journal of Astronomy and Space Sciences, 2014, 31, 1, 51  crossref(new windwow)
 References
1.
Bennett, F. V., 1972, “Mission planning for Lunar module descent and ascent”, NASA Technical Note, Houston

2.
Ramanan, R. V. and Lal, M., 2005, “Analysis of optimal strategies for soft landing on the Moon from lunar parking orbits”, Journal of Earth Systems Science, Vol. 114, No. 6, pp. 807-813 crossref(new window)

3.
Shan, Y and Duan, G., 2007, “Study on the Optimal Fuel Consumption of the Singularity Condition for Lunar Soft Landing”, Proc. of the 2007 IEEE International Conference on Robotics and Biomimetics, pp. 2254-2258.

4.
Hwakins, A.M., 2005, "Constrained Trajectory Optimization of a Soft Lunar Landing from a Parking Orbit”, the degree of Master of Science in Aeronautics and Astronautics, Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics

5.
Liu, X., Duan, G., 2006, “Nonlinear Optimal Control for the Soft Landing of Lunar Lander”, Systems and Control in Aerospace and Astronautics, pp. 1381-1387. crossref(new window)

6.
Liu, X., Duan, G., and Teo, K., 2008, "Brief paper: Optimal soft landing control for moon lander”, Automatica, Vol.4, pp. 1097-1103. crossref(new window)

7.
McInnes, C.R., 1995, "Path Shaping Guidance for Terminal Lunar Descent”, Acta Astronautica, Vol. 36, No. 7, pp. 367-377. crossref(new window)

8.
Lee, Donghun and Bang, Hyochoong, 2008, “Optimal Earth Escape Trajectory Using Continuation method and costate estimator”, 18th AAS/AISS Space Flight Mechanics Meeting

9.
Hull, D. G., 2003, Optimal Control Theory for Applications, Springer, New York, pp. 258-274.