Advanced SearchSearch Tips
Three-Axis Autopilot Design for a High Angle-Of-Attack Missile Using Mixed H2/H Control
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Three-Axis Autopilot Design for a High Angle-Of-Attack Missile Using Mixed H2/H Control
Won, Dae-Yeon; Tahk, Min-Jea; Kim, Yoon-Hwan;
  PDF(new window)
We report on the design of a three-axis missile autopilot using multi-objective control synthesis via linear matrix inequality techniques. This autopilot design guarantees performance criteria for a set of finite linear models. These models are linearized at different aerodynamic roll angle conditions over the flight envelope to capture uncertainties that occur in the high-angle-of-attack regime. Simulation results are presented for different aerodynamic roll angle variations and show that the performance of the controller is very satisfactory.
Mixed control;Three-axis autopilot;Linear matrix inequality technique;
 Cited by
A probabilistic robust mixed H2/H∞ fuzzy control method for hypersonic vehicles based on reliability theory, International Journal of Advanced Robotic Systems, 2018, 15, 1, 172988141775415  crossref(new windwow)
Blakelock, J. H. (1991). Automatic Control of Aircraft and Missiles. 2nd ed. New York: Wiley.

Chilali, M. and Gahinet, P. (1996). H(infinity) design with pole placement constraints: an LMI approach. IEEE Transactions on Automatic Control, 41, 358-367. crossref(new window)

Choi, B. H., Kang, S. H., Kim, H. J., Won, D. Y., Kim, Y. H., Jun, B. E., and Lee, J. I. (2008). Roll-pitch-yaw integrated H(infinity) controller synthesis for high angle-of-attack missiles. KSAS International Journal, 9, 66-75. crossref(new window)

Devaud, E., Harcaut, J. P., and Siguerdidjane, H. (2001). Threeaxes missile autopilot design: From linear to nonlinear control strategies. Journal of Guidance, Control, and Dynamics, 24, 64-71. crossref(new window)

Gahinet, P. and Apkarian, P. (1994). Linear matrix inequality approach to H(infinity) control. International Journal of Robust and Nonlinear Control, 4, 421-448.

Gahinet, P., Nemirovski, A., Laub, A. J., and Chilali, M. (1995). The LMI Control Toolbox User’s Guide. The MathWorks, Inc.

Hemsch, M. J. (1992). Tactical Missile Aerodynamics: General Topics. Washington, DC: American Institute of Aeronautics and Astronautics.

Kim, Y. H., Won, D. Y., Kim, T. H., Tahk, M. J., Jun, B. E., Lee, J. I., and An, J. Y. (2008). Integrated roll-pitch-yaw autopilot design for missiles. KSAS International Journal, 9, 129-136. crossref(new window)

Schere, C., Gahinet, P., and Chilali, M. (1997). Multi-objective output-feedback control via LMI optimization. IEEE Transactions on Automatic Control, 42, 896-911. crossref(new window)

Shamma, J. S. and Athans, M. (1992). Gain scheduling: potential hazards and possible remedies. IEEE Control Systems Magazine, 12, 101-107. crossref(new window)

Shamma, J. S. and Cloutier, J. R. (1993). Gain-scheduled missile autopilot design using linear parameter varying transformations. Journal of Guidance, Control, and Dynamics, 16, 256-263. crossref(new window)

White, B. A., Bruyere, L., and Tsourdos, A. (2007). Missile autopilot design using quasi-LPV polynomial eigenstructure assignment. IEEE Transactions on Aerospace and Electronic Systems, 43, 1470-1483. crossref(new window)