JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Finite Volume Analysis of a Supersonic Non-Equilibrium Flow Around an Axisymmetric Blunt Body
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Finite Volume Analysis of a Supersonic Non-Equilibrium Flow Around an Axisymmetric Blunt Body
Haoui, R.;
  PDF(new window)
 Abstract
The aim of this work is to analyze high temperature flows around an axisymmetric blunt body taking into account chemical and vibrational non-equilibrium state for air mixture species. For this purpose, a finite volume methodology is employed to determine the supersonic flow parameters around the axisymmetric blunt body. This allows the capture of a shock wave before a blunt body placed in supersonic free stream. The numerical technique uses the flux vector splitting method of Van Leer. Here, adequate time stepping parameters, along with Courant, Friedrich, Lewis coefficient and mesh size level are selected to ensure numerical convergence, sought with an order of .
 Keywords
Supersonic flow;Non-equilibrium;Finite volume;Blunt body;
 Language
English
 Cited by
1.
Effect of Mesh Size on the Viscous Flow Parameters of an Axisymmetric Nozzle,;

International Journal of Aeronautical and Space Sciences, 2011. vol.12. 2, pp.149-155 crossref(new window)
1.
Physico-chemical state of the air at the stagnation point during the atmospheric reentry of a spacecraft, Acta Astronautica, 2011, 68, 11-12, 1660  crossref(new windwow)
2.
Effect of Mesh Size on the Viscous Flow Parameters of an Axisymmetric Nozzle, International Journal of Aeronautical and Space Sciences, 2011, 12, 2, 149  crossref(new windwow)
3.
Design of the propelling nozzles for the launchers and satellites, International Journal of Aeronautical and Space Sciences, 2014, 15, 1, 91  crossref(new windwow)
 References
1.
Blackman, V. H. (1955). Vibrational Relaxation in Oxygen and Nitrogen (Technical Report). Palmer Physics Laboratory, Princeton University.

2.
Breshears, W. D and Bird, P. F. (1968). Effects of oxygen atoms on the vibrational relaxation of nitrogen. Journal of Chemical Physics, 48, 4768-4773. crossref(new window)

3.
Burtschell, Y. (1990). Performances, Dimensioning and Numerical Simulation of a Hypersonic Shock Tunnel with Refl ected Shock of Free Piston. PhD Thesis, University of Aix-Marseilles I, France.

4.
Druguet, M. C. (1992). Contribution to the Study of Nonequilibrium Reactive Hypersonic Euler’s Flows. PhD Thesis, University of Provence, France.

5.
Gardiner, W. C. (1984). Combustion Chemistry. New-York: Springer-Verlag.

6.
Goudjo, J. and Desideri, A. (1989). A Finite Volume Scheme to Resolution an Axisymmetric Euler Equations. (Research Report INRIA 1005), National Institute of Research in Informatics and Automatic (NIRIA).

7.
Haoui, R., Gahmousse, A., and Zeitoun, D. (2001). Chemical and vibrational nonequilibrium flow in a hypersonic axisymmetric nozzle. International Journal of Thermal Sciences, 40, 787-795. crossref(new window)

8.
Haoui, R., Gahmousse, A., and Zeitoun, D. (2003). Condition of convergence applied to an axisymmetric reactive flow. The 16th French Congress of Mechanic, 1-5 September 2003, Nice, France, Paper 738.

9.
Kiefer, J. H. and Lutz, R. W. (1967). The effect of oxygen atoms on the vibrational relaxation of oxygen. The 11th Symposium on Combustion, Pittsburg, CA. p. 67-74. crossref(new window)

10.
Landau, L. and Teller, E. (1936). Theory of sound dispersion. Physikalische Zeitschrift der Sowjetunion, 10, 34-43.

11.
Lee, S. H. (1986). Electron impact vibrational excitation in the flow field of aero assisted orbital transfer vehicles. In J. N. Moss and C. D. Scott, eds. Progress in Astronautics and Aeronautics, Vol. 103: Thermophysical aspects of Re-entry Flows. New York, NY: American Institute of Aeronautics and Astronautics. pp. 197-224.

12.
Nagamatsu, H. T. (1959). Real Gas Effects in Flow Over Blunt Bodies at Hypersonic Speeds (Report NO. 59-RL-2177). New York, NY: General Electric Research Laboratory.

13.
Park, C. (1989). A Review of Reaction Rates in High Temperature Air. AIAA Paper, 89, 1740.

14.
Thivet, F. (1989). Modeling of Nonequilibrium of Vibration in Reactive Flow (Management Report). Laboratory of Molecular and Macroscopic Combustion, CNRS/ECP.

15.
Van Leer, B. (1982). Flux vector splitting for the Euler Equations. Lecture Notes in Physics, 170, 507-512. crossref(new window)

16.
Wray, K. L. (1962). Shock tube study of the vibrational relaxation of nitric oxide. Journal of Chemical Physics, 36, 2597-2603. crossref(new window)